
Brief History of Automake

David MacKenzie
Tom Tromey
Alexandre Duret-Lutz

This manual describes (part of) the history of GNU Automake, a program that creates
GNU standards-compliant Makefiles from template files.

Copyright c© 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

i

Table of Contents

1 Timeline . 1

2 Evolution of Automatic Dependency Tracking
. 13

2.1 First Take on Dependency Tracking . 13
Description . 13
Bugs . 13
Historical Note . 13

2.2 Dependencies As Side Effects . 14
Description . 14
Bugs . 14

2.3 Dependencies for the User . 14
Description . 14
Bugs . 15

2.4 Techniques for Computing Dependencies . 16
2.4.1 Recommendations for Tool Writers . 16
2.4.2 Future Directions for Dependencies . 16

3 Release Statistics . 17

Appendix A Copying This Manual 19
A.1 GNU Free Documentation License . 19

Chapter 1: Timeline 1

1 Timeline

1994-09-19 First CVS commit.
If we can trust the CVS repository, David J. MacKenzie (djm) started working
on Automake (or AutoMake, as it was spelt then) this Monday.

The first version of the automake script looks as follows.

#!/bin/sh

status=0

for makefile

do

if test ! -f ${makefile}.am; then

echo "automake: ${makefile}.am: No such honkin’ file"

status=1

continue

fi

exec 4> ${makefile}.in

done

From this you can already see that Automake will be about reading ‘*.am’ file
and producing ‘*.in’ files. You cannot see anything else, but if you also know
that David is the one who created Autoconf two years before you can guess the
rest.

Several commits follow, and by the end of the day Automake is reported to
work for GNU fileutils and GNU m4.

The modus operandi is the one that is still used today: variable assignments in
‘Makefile.am’ files trigger injections of precanned ‘Makefile’ fragments into
the generated ‘Makefile.in’. The use of ‘Makefile’ fragments was inspired by
the 4.4BSD make and include files, however Automake aims to be portable and
to conform to the GNU standards for ‘Makefile’ variables and targets.

At this point, the most recent release of Autoconf is version 1.11, and David is
preparing to release Autoconf 2.0 in late October. As a matter of fact, he will
barely touch Automake after September.

1994-11-05 David MacKenzie’s last commit.
At this point Automake is a 200 line portable shell script, plus 332 lines of
‘Makefile’ fragments. In the ‘README’, David states his ambivalence between
“portable shell” and “more appropriate language”:

I wrote it keeping in mind the possibility of it becoming an Au-
toconf macro, so it would run at configure-time. That would slow
configuration down a bit, but allow users to modify the Makefile.am
without needing to fetch the AutoMake package. And, the Make-
file.in files wouldn’t need to be distributed. But all of AutoMake

Chapter 1: Timeline 2

would. So I might reimplement AutoMake in Perl, m4, or some
other more appropriate language.

Automake is described as “an experimental Makefile generator”. There is no
documentation. Adventurous users are referred to the examples and patches
needed to use Automake with GNU m4 1.3, fileutils 3.9, time 1.6, and develop-
ment versions of find and indent.

These examples seem to have been lost. However at the time of writing (10
years later in September, 2004) the FSF still distributes a package that uses
this version of Automake: check out GNU termutils 2.0.

1995-11-12 Tom Tromey’s first commit.
After one year of inactivity, Tom Tromey takes over the package. Tom was
working on GNU cpio back then, and doing this just for fun, having trouble
finding a project to contribute to. So while hacking he wanted to bring the
‘Makefile.in’ up to GNU standards. This was hard, and one day he saw
Automake on ftp://alpha.gnu.org/, grabbed it and tried it out.

Tom didn’t talk to djm about it until later, just to make sure he didn’t mind if
he made a release. He did a bunch of early releases to the Gnits folks.

Gnits was (and still is) totally informal, just a few GNU friends who François
Pinard knew, who were all interested in making a common infrastructure for
GNU projects, and shared a similar outlook on how to do it. So they were able
to make some progress. It came along with Autoconf and extensions thereof,
and then Automake from David and Tom (who were both gnitsians). One of
their ideas was to write a document paralleling the GNU standards, that was
more strict in some ways and more detailed. They never finished the GNITS
standards, but the ideas mostly made their way into Automake.

1995-11-23 Automake 0.20
Besides introducing automatic dependency tracking (see Chapter 2 [Depen-
dency Tracking Evolution], page 13), this version also supplies a 9-page manual.

At this time aclocal and AM_INIT_AUTOMAKE did not exist, so many things
had to be done by hand. For instance, here is what a configure.in (this is the
former name of the ‘configure.ac’ we use today) must contain in order to use
Automake 0.20:

PACKAGE=cpio

VERSION=2.3.911

AC_DEFINE_UNQUOTED(PACKAGE, "$PACKAGE")

AC_DEFINE_UNQUOTED(VERSION, "$VERSION")

AC_SUBST(PACKAGE)

AC_SUBST(VERSION)

AC_ARG_PROGRAM

AC_PROG_INSTALL

(Today all of the above is achieved by AC_INIT and AM_INIT_AUTOMAKE.)

Here is how programs are specified in ‘Makefile.am’:

PROGRAMS = hello

hello_SOURCES = hello.c

ftp://alpha.gnu.org/

Chapter 1: Timeline 3

This looks pretty much like what we do today, except the PROGRAMS variable has
no directory prefix specifying where ‘hello’ should be installed: all programs
are installed in ‘$(bindir)’. LIBPROGRAMS can be used to specify programs
that must be built but not installed (it is called noinst_PROGRAMS nowadays).

Programs can be built conditionally using AC_SUBSTitutions:

PROGRAMS = @progs@

AM_PROGRAMS = foo bar baz

(AM_PROGRAMS has since then been renamed to EXTRA_PROGRAMS.)

Similarly scripts, static libraries, and data can be built and installed using the
LIBRARIES, SCRIPTS, and DATA variables. However LIBRARIES were treated
a bit specially in that Automake did automatically supply the ‘lib’ and ‘.a’
prefixes. Therefore to build ‘libcpio.a’, one had to write

LIBRARIES = cpio

cpio_SOURCES = ...

Extra files to distribute must be listed in DIST_OTHER (the ancestor of EXTRA_
DIST). Also extra directories that are to be distributed should appear in DIST_

SUBDIRS, but the manual describes this as a temporary ugly hack (today extra
directories should also be listed in EXTRA_DIST, and DIST_SUBDIRS is used for
another purpose, see Section “Conditional Subdirectories” in GNU Automake).

1995-11-26 Automake 0.21
In less time than it takes to cook a frozen pizza, Tom rewrites Automake using
Perl. At this time Perl 5 is only one year old, and Perl 4.036 is in use at many
sites. Supporting several Perl versions has been a source of problems through
the whole history of Automake.

If you never used Perl 4, imagine Perl 5 without objects, without ‘my’ variables
(only dynamically scoped ‘local’ variables), without function prototypes, with
function calls that needs to be prefixed with ‘&’, etc. Traces of this old style
can still be found in today’s automake.

1995-11-28 Automake 0.22
1995-11-29 Automake 0.23

Bug fixes.

1995-12-08 Automake 0.24
1995-12-10 Automake 0.25

Releases are raining. 0.24 introduces the uniform naming scheme we use
today, i.e., bin_PROGRAMS instead of PROGRAMS, noinst_LIBRARIES instead
of LIBLIBRARIES, etc. (However EXTRA_PROGRAMS does not exist yet,
AM_PROGRAMS is still in use; and TEXINFOS and MANS still have no directory
prefixes.) Adding support for prefixes like that was one of the major ideas in
automake; it has lasted pretty well.

AutoMake is renamed to Automake (Tom seems to recall it was François
Pinard’s doing).

0.25 fixes a Perl 4 portability bug.

Chapter 1: Timeline 4

1995-12-18 Jim Meyering starts using Automake in GNU Textutils.
1995-12-31 François Pinard starts using Automake in GNU tar.
1996-01-03 Automake 0.26
1996-01-03 Automake 0.27

Of the many changes and suggestions sent by François Pinard and included
in 0.26, perhaps the most important is the advice that to ease customization
a user rule or variable definition should always override an Automake rule or
definition.

Gordon Matzigkeit and Jim Meyering are two other early contributors that
have been sending fixes.

0.27 fixes yet another Perl 4 portability bug.

1996-01-13 Automake 0.28
Automake starts scanning ‘configure.in’ for LIBOBJS support. This is an
important step because until this version Automake only knew about the
‘Makefile.am’s it processed. ‘configure.in’ was Autoconf’s world and the
link between Autoconf and Automake had to be done by the ‘Makefile.am’
author. For instance, if ‘config.h’ was generated by ‘configure’, it was the
package maintainer’s responsibility to define the CONFIG_HEADER variable in
each ‘Makefile.am’.

Succeeding releases will rely more and more on scanning ‘configure.in’ to
better automate the Autoconf integration.

0.28 also introduces the AUTOMAKE_OPTIONS variable and the ‘--gnu’ and
‘--gnits’ options, the latter being stricter.

1996-02-07 Automake 0.29
Thanks to ‘configure.in’ scanning, CONFIG_HEADER is gone, and rebuild rules
for ‘configure’-generated file are automatically output.

TEXINFOS and MANS converted to the uniform naming scheme.

1996-02-24 Automake 0.30
The test suite is born. It contains 9 tests. From now on test cases will be
added pretty regularly (see Chapter 3 [Releases], page 17), and this proved to
be really helpful later on.

EXTRA_PROGRAMS finally replaces AM_PROGRAMS.

All the third-party Autoconf macros, written mostly by François Pinard (and
later Jim Meyering), are distributed in Automake’s hand-written ‘aclocal.m4’
file. Package maintainers are expected to extract the necessary macros from this
file. (In previous versions you had to copy and paste them from the manual...)

1996-03-11 Automake 0.31
The test suite in 0.30 was run via a long check-local rule. Upon Ulrich
Drepper’s suggestion, 0.31 makes it an Automake rule output whenever the
TESTS variable is defined.

DIST_OTHER is renamed to EXTRA_DIST, and the check_ prefix is introduced.
The syntax is now the same as today.

Chapter 1: Timeline 5

1996-03-15 Gordon Matzigkeit starts writing libtool.
1996-04-27 Automake 0.32

-hook targets are introduced; an idea from Dieter Baron.

‘*.info’ files, which were output in the build directory are now built in the
source directory, because they are distributed. It seems these files like to move
back and forth as that will happen again in future versions.

1996-05-18 Automake 0.33
Gord Matzigkeit’s main two contributions:

• very preliminary libtool support

• the distcheck rule

Although they were very basic at this point, these are probably among the top
features for Automake today.

Jim Meyering also provides the infamous jm_MAINTAINER_MODE, since then
renamed to AM_MAINTAINER_MODE and abandoned by its author (see Section
“maintainer-mode” in GNU Automake).

1996-05-28 Automake 1.0
After only six months of heavy development, the automake script is 3134 lines
long, plus 973 lines of ‘Makefile’ fragments. The package has 30 pages of
documentation, and 38 test cases. ‘aclocal.m4’ contains 4 macros.

From now on and until version 1.4, new releases will occur at a rate of about
one a year. 1.1 did not exist, actually 1.1b to 1.1p have been the name of beta
releases for 1.2. This is the first time Automake uses suffix letters to designate
beta releases, a habit that lasts.

1996-10-10 Kevin Dalley packages Automake 1.0 for Debian GNU/Linux.
1996-11-26 David J. MacKenzie releases Autoconf 2.12.

Between June and October, the Autoconf development is almost stalled. Roland
McGrath has been working at the beginning of the year. David comes back in
November to release 2.12, but he won’t touch Autoconf anymore after this
year, and Autoconf then really stagnates. The desolate Autoconf ‘ChangeLog’
for 1997 lists only 7 commits.

1997-02-28 automake@gnu.ai.mit.edu list alive
The mailing list is announced as follows:

I’ve created the "automake" mailing list. It is

"automake@gnu.ai.mit.edu". Administrivia, as always, to

automake-request@gnu.ai.mit.edu.

The charter of this list is discussion of automake, autoconf, and

other configuration/portability tools (e.g., libtool). It is expected

that discussion will range from pleas for help all the way up to

patches.

This list is archived on the FSF machines. Offhand I don’t know if

you can get the archive without an account there.

This list is open to anybody who wants to join. Tell all your

friends!

mailto:automake@gnu.ai.mit.edu

Chapter 1: Timeline 6

-- Tom Tromey

Before that people were discussing Automake privately, on the Gnits mailing
list (which is not public either), and less frequently on gnu.misc.discuss.

gnu.ai.mit.edu is now gnu.org, in case you never noticed. The archives of the
early years of the automake@gnu.org list have been lost, so today it is almost
impossible to find traces of discussions that occurred before 1999. This has
been annoying more than once, as such discussions can be useful to understand
the rationale behind a piece of uncommented code that was introduced back
then.

1997-06-22 Automake 1.2
Automake developments continues, and more and more new Autoconf macros
are required. Distributing them in ‘aclocal.m4’ and requiring people to browse
this file to extract the relevant macros becomes uncomfortable. Ideally, some
of them should be contributed to Autoconf so that they can be used directly,
however Autoconf is currently inactive. Automake 1.2 consequently introduces
aclocal (aclocal was actually started on 1996-07-28), a tool that automati-
cally constructs an ‘aclocal.m4’ file from a repository of third-party macros.
Because Autoconf has stalled, Automake also becomes a kind of repository for
such third-party macros, even macros completely unrelated to Automake (for
instance macros that fix broken Autoconf macros).

The 1.2 release contains 20 macros, including the AM_INIT_AUTOMAKE macro
that simplifies the creation of ‘configure.in’.

Libtool is fully supported using *_LTLIBRARIES.

The missing script is introduced by François Pinard; it is meant to be a better
solution than AM_MAINTAINER_MODE (see Section “maintainer-mode” in GNU
Automake).

Conditionals support was implemented by Ian Lance Taylor. At the time, Tom
and Ian were working on an internal project at Cygnus. They were using
ILU, which is pretty similar to CORBA. They wanted to integrate ILU into
their build, which was all ‘configure’-based, and Ian thought that adding
conditionals to automake was simpler than doing all the work in ‘configure’
(which was the standard at the time). So this was actually funded by Cygnus.

This very useful but tricky feature will take a lot of time to stabilize. (At the
time this text is written, there are still primaries that have not been updated
to support conditional definitions in Automake 1.9.)

The automake script has almost doubled: 6089 lines of Perl, plus 1294 lines of
‘Makefile’ fragments.

1997-07-08 Gordon Matzigkeit releases Libtool 1.0.
1998-04-05 Automake 1.3

This is a small advance compared to 1.2. It adds support for assembly, and
preliminary support for Java.

Perl 5.004 04 is out, but fixes to support Perl 4 are still regularly submitted
whenever Automake breaks it.

Chapter 1: Timeline 7

1998-09-06 sourceware.cygnus.com is on-line.
Sourceware was setup by Jason Molenda to host open source projects.

1998-09-19 Automake CVS repository moved to sourceware.cygnus.com

1998-10-26 sourceware.cygnus.com announces it hosts Automake:
Automake is now hosted on sourceware.cygnus.com. It has a publicly ac-
cessible CVS repository. This CVS repository is a copy of the one Tom was
using on his machine, which in turn is based on a copy of the CVS repos-
itory of David MacKenzie. This is why we still have to full source history.
(Automake was on Sourceware until 2007-10-29, when it moved to a git repos-
itory on savannah.gnu.org, but the Sourceware host had been renamed to
sources.redhat.com.)

The oldest file in the administrative directory of the CVS repository that
was created on Sourceware is dated 1998-09-19, while the announcement that
automake and autoconf had joined sourceware was made on 1998-10-26. They
were among the first projects to be hosted there.

The heedful reader will have noticed Automake was exactly 4 years old on
1998-09-19.

1999-01-05 Ben Elliston releases Autoconf 2.13.
1999-01-14 Automake 1.4

This release adds support for Fortran 77 and for the include statement. Also,
‘+=’ assignments are introduced, but it is still quite easy to fool Automake when
mixing this with conditionals.

These two releases, Automake 1.4 and Autoconf 2.13 make a duo that will be
used together for years.

automake is 7228 lines, plus 1591 lines of Makefile fragment, 20 macros (some
1.3 macros were finally contributed back to Autoconf), 197 test cases, and 51
pages of documentation.

1999-03-27 The user-dep-branch is created on the CVS repository.
This implements a new dependency tracking schemed that should be able to
handle automatic dependency tracking using any compiler (not just gcc) and
any make (not just GNU make). In addition, the new scheme should be more
reliable than the old one, as dependencies are generated on the end user’s
machine. Alexandre Oliva creates depcomp for this purpose.

See Chapter 2 [Dependency Tracking Evolution], page 13, for more details about
the evolution of automatic dependency tracking in Automake.

1999-11-21 The user-dep-branch is merged into the main trunk.
This was a huge problem since we also had patches going in on the trunk. The
merge took a long time and was very painful.

2000-05-10
Since September 1999 and until 2003, Akim Demaille will be zealously revamp-
ing Autoconf.

I think the next release should be called "3.0".
Let’s face it: you’ve basically rewritten autoconf.

Chapter 1: Timeline 8

Every weekend there are 30 new patches.
I don’t see how we could call this "2.15" with a straight face.
– Tom Tromey on autoconf@gnu.org

Actually Akim works like a submarine: he will pile up patches while he works
off-line during the weekend, and flush them in batch when he resurfaces on
Monday.

2001-01-24
On this Wednesday, Autoconf 2.49c, the last beta before Autoconf 2.50 is out,
and Akim has to find something to do during his week-end :)

2001-01-28
Akim sends a batch of 14 patches to automake@gnu.org.

Aiieeee! I was dreading the day that the Demaillator turned his
sights on automake. . . and now it has arrived! – Tom Tromey

It’s only the beginning: in two months he will send 192 patches. Then he would
slow down so Tom can catch up and review all this. Initially Tom actually read
all these patches, then he probably trustingly answered OK to most of them,
and finally gave up and let Akim apply whatever he wanted. There was no way
to keep up with that patch rate.

Anyway the patch below won’t apply since it predates Akim’s
sourcequake; I have yet to figure where the relevant passage has
been moved :) – Alexandre Duret-Lutz

All these patches were sent to and discussed on automake@gnu.org, so
subscribed users were literally drowning in technical mails. Eventually, the
automake-patches@gnu.org mailing list was created in May.

Year after year, Automake had drifted away from its initial design: construct
‘Makefile.in’ by assembling various ‘Makefile’ fragments. In 1.4, lots of
‘Makefile’ rules are being emitted at various places in the automake script
itself; this does not help ensuring a consistent treatment of these rules (for
instance making sure that user-defined rules override Automake’s own rules).
One of Akim’s goal was moving all these hard-coded rules to separate ‘Makefile’
fragments, so the logic could be centralized in a ‘Makefile’ fragment processor.

Another significant contribution of Akim is the interface with the “trace” fea-
ture of Autoconf. The way to scan ‘configure.in’ at this time was to read the
file and grep the various macro of interest to Automake. Doing so could break
in many unexpected ways; automake could miss some definition (for instance
‘AC_SUBST([$1], [$2])’ where the arguments are known only when M4 is run),
or conversely it could detect some macro that was not expanded (because it is
called conditionally). In the CVS version of Autoconf, Akim had implemented
the ‘--trace’ option, which provides accurate information about where macros
are actually called and with what arguments. Akim will equip Automake with
a second ‘configure.in’ scanner that uses this ‘--trace’ interface. Since it
was not sensible to drop the Autoconf 2.13 compatibility yet, this experimental
scanner was only used when an environment variable was set, the traditional
grep-scanner being still the default.

mailto:autoconf@gnu.org
mailto:automake@gnu.org
mailto:automake@gnu.org
mailto:automake-patches@gnu.org

Chapter 1: Timeline 9

2001-04-25 Gary V. Vaughan releases Libtool 1.4
It has been more than two years since Automake 1.4, CVS Automake has
suffered lot’s of heavy changes and still is not ready for release. Libtool 1.4
had to be distributed with a patch against Automake 1.4.

2001-05-08 Automake 1.4-p1
2001-05-24 Automake 1.4-p2

Gary V. Vaughan, the principal Libtool maintainer, makes a “patch release” of
Automake:

The main purpose of this release is to have a stable automake which
is compatible with the latest stable libtool.

The release also contains obvious fixes for bugs in Automake 1.4, some of which
were reported almost monthly.

2001-05-21 Akim Demaille releases Autoconf 2.50
2001-06-07 Automake 1.4-p3
2001-06-10 Automake 1.4-p4
2001-07-15 Automake 1.4-p5

Gary continues his patch-release series. These also add support for some new
Autoconf 2.50 idioms. Essentially, Autoconf now advocates ‘configure.ac’
over ‘configure.in’, and it introduces a new syntax for AC_OUTPUTing files.

2001-08-23 Automake 1.5
A major and long-awaited release, that comes more than two years after 1.4.
It brings many changes, among which:

• The new dependency tracking scheme that uses depcomp. Aside from
the improvement on the dependency tracking itself (see Chapter 2 [De-
pendency Tracking Evolution], page 13), this also streamlines the use of
automake-generated ‘Makefile.in’s as the ‘Makefile.in’s used during de-
velopment are now the same as those used in distributions. Before that the
‘Makefile.in’s generated for maintainers required GNU make and GCC,
they were different from the portable ‘Makefile’ generated for distribution;
this was causing some confusion.

• Support for per-target compilation flags.

• Support for reference to files in subdirectories in most ‘Makefile.am’ vari-
ables.

• Introduction of the dist_, nodist_, and nobase_ prefixes.

• Perl 4 support is finally dropped.

1.5 did break several packages that worked with 1.4. Enough so that Linux dis-
tributions could not easily install the new Automake version without breaking
many of the packages for which they had to run automake.

Some of these breakages were effectively bugs that would eventually be fixed in
the next release. However, a lot of damage was caused by some changes made
deliberately to render Automake stricter on some setup we did consider bogus.
For instance, ‘make distcheck’ was improved to check that ‘make uninstall’
did remove all the files ‘make install’ installed, that ‘make distclean’ did

Chapter 1: Timeline 10

not omit some file, and that a VPATH build would work even if the source
directory was read-only. Similarly, Automake now rejects multiple definitions
of the same variable (because that would mix very badly with conditionals),
and ‘+=’ assignments with no previous definition. Because these changes all
occurred suddenly after 1.4 had been established for more than two years, it
hurt users.

To make matter worse, meanwhile Autoconf (now at version 2.52) was facing
similar troubles, for similar reasons.

2002-03-05 Automake 1.6
This release introduced versioned installation (see Section “API Versioning” in
GNU Automake). This was mainly pushed by Havoc Pennington, taking the
GNOME source tree as motive: due to incompatibilities between the autotools
it’s impossible for the GNOME packages to switch to Autoconf 2.53 and Au-
tomake 1.5 all at once, so they are currently stuck with Autoconf 2.13 and
Automake 1.4.

The idea was to call this version ‘automake-1.6’, call all its bug-fix versions
identically, and switch to ‘automake-1.7’ for the next release that adds new fea-
tures or changes some rules. This scheme implies maintaining a bug-fix branch
in addition to the development trunk, which means more work from the main-
tainer, but providing regular bug-fix releases proved to be really worthwhile.

Like 1.5, 1.6 also introduced a bunch of incompatibilities, intentional or not.
Perhaps the more annoying was the dependence on the newly released Autoconf
2.53. Autoconf seemed to have stabilized enough since its explosive 2.50 release
and included changes required to fix some bugs in Automake. In order to
upgrade to Automake 1.6, people now had to upgrade Autoconf too; for some
packages it was no picnic.

While versioned installation helped people to upgrade, it also unfortunately
allowed people not to upgrade. At the time of writing, some Linux distributions
are shipping packages for Automake 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9. Most of these
still install 1.4 by default. Some distribution also call 1.4 the “stable” version,
and present “1.9” as the development version; this does not really makes sense
since 1.9 is way more solid than 1.4. All this does not help the newcomer.

2002-04-11 Automake 1.6.1
1.6, and the upcoming 1.4-p6 release were the last release by Tom. This one and
those following will be handled by Alexandre Duret-Lutz. Tom is still around,
and will be there until about 1.7, but his interest into Automake is drifting
away towards projects like gcj.

Alexandre has been using Automake since 2000, and started to contribute
mostly on Akim’s incitement (Akim and Alexandre have been working in the
same room from 1999 to 2002). In 2001 and 2002 he had a lot of free time to
enjoy hacking Automake.

2002-06-14 Automake 1.6.2
2002-07-28 Automake 1.6.3
2002-07-28 Automake 1.4-p6

Two releases on the same day. 1.6.3 is a bug-fix release.

Chapter 1: Timeline 11

Tom Tromey backported the versioned installation mechanism on the 1.4
branch, so that Automake 1.6.x and Automake 1.4-p6 could be installed side
by side. Another request from the GNOME folks.

2002-09-25 Automake 1.7
This release switches to the new ‘configure.ac’ scanner Akim was experiment-
ing in 1.5.

2002-10-16 Automake 1.7.1
2002-12-06 Automake 1.7.2
2003-02-20 Automake 1.7.3
2003-04-23 Automake 1.7.4
2003-05-18 Automake 1.7.5
2003-07-10 Automake 1.7.6
2003-09-07 Automake 1.7.7
2003-10-07 Automake 1.7.8

Many bug-fix releases. 1.7 lasted because the development version (upcoming
1.8) was suffering some major internal revamping.

2003-10-26 Automake on screen
Episode 49, ‘Repercussions’, in the third season of the ‘Alias’ TV show is first
aired.

Marshall, one of the characters, is working on a computer virus that he has
to modify before it gets into the wrong hands or something like that. The
screenshots you see do not show any program code, they show a ‘Makefile.in’
generated by automake...

2003-11-09 Automake 1.7.9
2003-12-10 Automake 1.8

The most striking update is probably that of aclocal.

aclocal now uses m4_include in the produced ‘aclocal.m4’ when the included
macros are already distributed with the package (an idiom used in many pack-
ages), which reduces code duplication. Many people liked that, but in fact this
change was really introduced to fix a bug in rebuild rules: ‘Makefile.in’ must
be rebuilt whenever a dependency of ‘configure’ changes, but all the ‘m4’ files
included in ‘aclocal.m4’ where unknown from automake. Now automake can
just trace the m4_includes to discover the dependencies.

aclocal also starts using the ‘--trace’ Autoconf option in order to discover
used macros more accurately. This will turn out to be very tricky (later releases
will improve this) as people had devised many ways to cope with the limita-
tion of previous aclocal versions, notably using handwritten m4_includes:
aclocal must make sure not to redefine a rule that is already included by such
statement.

Automake also has seen its guts rewritten. Although this rewriting took a lot
of efforts, it is only apparent to the users in that some constructions previously
disallowed by the implementation now work nicely. Conditionals, Locations,

Chapter 1: Timeline 12

Variable and Rule definitions, Options: these items on which Automake works
have been rewritten as separate Perl modules, and documented.

2004-01-11 Automake 1.8.1
2004-01-12 Automake 1.8.2
2004-03-07 Automake 1.8.3
2004-04-25 Automake 1.8.4
2004-05-16 Automake 1.8.5
2004-07-28 Automake 1.9

This release tries to simplify the compilation rules it outputs to reduce the size
of the Makefile. The complaint initially come from the libgcj developers. Their
‘Makefile.in’ generated with Automake 1.4 and custom build rules (1.4 did
not support compiled Java) is 250KB. The one generated by 1.8 was over 9MB!
1.9 gets it down to 1.2MB.

Aside from this it contains mainly minor changes and bug-fixes.

2004-08-11 Automake 1.9.1
2004-09-19 Automake 1.9.2

Automake has ten years. This chapter of the manual was initially written for
this occasion.

2007-10-29 Automake repository moves to savannah.gnu.org

and uses git as primary repository.

Chapter 2: Evolution of Automatic Dependency Tracking 13

2 Evolution of Automatic Dependency Tracking

Over the years Automake has deployed three different dependency tracking methods. Each
method, including the current one, has had flaws of various sorts. Here we lay out the
different dependency tracking methods, their flaws, and their fixes. We conclude with rec-
ommendations for tool writers, and by indicating future directions for dependency tracking
work in Automake.

2.1 First Take on Dependency Tracking

Description

Our first attempt at automatic dependency tracking was based on the method recommended
by GNU make. (see Section “Generating Prerequisites Automatically” in The GNU make
Manual)

This version worked by precomputing dependencies ahead of time. For each source file,
it had a special ‘.P’ file that held the dependencies. There was a rule to generate a ‘.P’ file
by invoking the compiler appropriately. All such ‘.P’ files were included by the ‘Makefile’,
thus implicitly becoming dependencies of ‘Makefile’.

Bugs

This approach had several critical bugs.

• The code to generate the ‘.P’ file relied on gcc. (A limitation, not technically a bug.)

• The dependency tracking mechanism itself relied on GNU make. (A limitation, not
technically a bug.)

• Because each ‘.P’ file was a dependency of ‘Makefile’, this meant that dependency
tracking was done eagerly by make. For instance, ‘make clean’ would cause all the
dependency files to be updated, and then immediately removed. This eagerness also
caused problems with some configurations; if a certain source file could not be compiled
on a given architecture for some reason, dependency tracking would fail, aborting the
entire build.

• As dependency tracking was done as a pre-pass, compile times were doubled–the com-
piler had to be run twice per source file.

• ‘make dist’ re-ran automake to generate a ‘Makefile’ that did not have automatic
dependency tracking (and that was thus portable to any version of make). In order to
do this portably, Automake had to scan the dependency files and remove any reference
that was to a source file not in the distribution. This process was error-prone. Also, if
‘make dist’ was run in an environment where some object file had a dependency on a
source file that was only conditionally created, Automake would generate a ‘Makefile’
that referred to a file that might not appear in the end user’s build. A special, hacky
mechanism was required to work around this.

Historical Note

The code generated by Automake is often inspired by the ‘Makefile’ style of a particular
author. In the case of the first implementation of dependency tracking, I believe the impetus
and inspiration was Jim Meyering. (I could be mistaken. If you know otherwise feel free to
correct me.)

Chapter 2: Evolution of Automatic Dependency Tracking 14

2.2 Dependencies As Side Effects

Description

The next refinement of Automake’s automatic dependency tracking scheme was to imple-
ment dependencies as side effects of the compilation. This was aimed at solving the most
commonly reported problems with the first approach. In particular we were most concerned
with eliminating the weird rebuilding effect associated with make clean.

In this approach, the ‘.P’ files were included using the -include command, which let us
create these files lazily. This avoided the ‘make clean’ problem.

We only computed dependencies when a file was actually compiled. This avoided the
performance penalty associated with scanning each file twice. It also let us avoid the other
problems associated with the first, eager, implementation. For instance, dependencies would
never be generated for a source file that was not compilable on a given architecture (because
it in fact would never be compiled).

Bugs

• This approach also relied on the existence of gcc and GNU make. (A limitation, not
technically a bug.)

• Dependency tracking was still done by the developer, so the problems from the first
implementation relating to massaging of dependencies by ‘make dist’ were still in effect.

• This implementation suffered from the “deleted header file” problem. Suppose a lazily-
created ‘.P’ file includes a dependency on a given header file, like this:

maude.o: maude.c something.h

Now suppose that you remove ‘something.h’ and update ‘maude.c’ so that this include
is no longer needed. If you run make, you will get an error because there is no way to
create ‘something.h’.

We fixed this problem in a later release by further massaging the output of gcc to
include a dummy dependency for each header file.

2.3 Dependencies for the User

Description

The bugs associated with ‘make dist’, over time, became a real problem. Packages using
Automake were being built on a large number of platforms, and were becoming increasingly
complex. Broken dependencies were distributed in “portable” ‘Makefile.in’s, leading to
user complaints. Also, the requirement for gcc and GNU make was a constant source of bug
reports. The next implementation of dependency tracking aimed to remove these problems.

We realized that the only truly reliable way to automatically track dependencies was
to do it when the package itself was built. This meant discovering a method portable
to any version of make and any compiler. Also, we wanted to preserve what we saw as
the best point of the second implementation: dependency computation as a side effect of
compilation.

In the end we found that most modern make implementations support some form of
include directive. Also, we wrote a wrapper script that let us abstract away differences

Chapter 2: Evolution of Automatic Dependency Tracking 15

between dependency tracking methods for compilers. For instance, some compilers cannot
generate dependencies as a side effect of compilation. In this case we simply have the
script run the compiler twice. Currently our wrapper script (depcomp) knows about twelve
different compilers (including a "compiler" that simply invokes makedepend and then the
real compiler, which is assumed to be a standard Unix-like C compiler with no way to do
dependency tracking).

Bugs

• Running a wrapper script for each compilation slows down the build.

• Many users don’t really care about precise dependencies.

• This implementation, like every other automatic dependency tracking scheme in com-
mon use today (indeed, every one we’ve ever heard of), suffers from the “duplicated
new header” bug.

This bug occurs because dependency tracking tools, such as the compiler, only generate
dependencies on the successful opening of a file, and not on every probe.

Suppose for instance that the compiler searches three directories for a given header, and
that the header is found in the third directory. If the programmer erroneously adds a
header file with the same name to the first directory, then a clean rebuild from scratch
could fail (suppose the new header file is buggy), whereas an incremental rebuild will
succeed.

What has happened here is that people have a misunderstanding of what a dependency
is. Tool writers think a dependency encodes information about which files were read
by the compiler. However, a dependency must actually encode information about what
the compiler tried to do.

This problem is not serious in practice. Programmers typically do not use the same
name for a header file twice in a given project. (At least, not in C or C++. This
problem may be more troublesome in Java.) This problem is easy to fix, by modifying
dependency generators to record every probe, instead of every successful open.

• Since Automake generates dependencies as a side effect of compilation, there is a boot-
strapping problem when header files are generated by running a program. The problem
is that, the first time the build is done, there is no way by default to know that the
headers are required, so make might try to run a compilation for which the headers
have not yet been built.

This was also a problem in the previous dependency tracking implementation.

The current fix is to use BUILT_SOURCES to list built headers (see Section “Sources” in
GNU Automake). This causes them to be built before any other build rules are run.
This is unsatisfactory as a general solution, however in practice it seems sufficient for
most actual programs.

This code is used since Automake 1.5.

In GCC 3.0, we managed to convince the maintainers to add special command-line
options to help Automake more efficiently do its job. We hoped this would let us avoid the
use of a wrapper script when Automake’s automatic dependency tracking was used with
gcc.

Chapter 2: Evolution of Automatic Dependency Tracking 16

Unfortunately, this code doesn’t quite do what we want. In particular, it removes the
dependency file if the compilation fails; we’d prefer that it instead only touch the file in any
way if the compilation succeeds.

Nevertheless, since Automake 1.7, when a recent gcc is detected at configure time, we
inline the dependency-generation code and do not use the depcomp wrapper script. This
makes compilations faster for those using this compiler (probably our primary user base).
The counterpart is that because we have to encode two compilation rules in ‘Makefile’
(with or without depcomp), the produced ‘Makefile’s are larger.

2.4 Techniques for Computing Dependencies

There are actually several ways for a build tool like Automake to cause tools to generate
dependencies.

makedepend

This was a commonly-used method in the past. The idea is to run a special
program over the source and have it generate dependency information. Tra-
ditional implementations of makedepend are not completely precise; ordinarily
they were conservative and discovered too many dependencies.

The tool An obvious way to generate dependencies is to simply write the tool so that it
can generate the information needed by the build tool. This is also the most
portable method. Many compilers have an option to generate dependencies.
Unfortunately, not all tools provide such an option.

The file system
It is possible to write a special file system that tracks opens, reads, writes, etc,
and then feed this information back to the build tool. clearmake does this.
This is a very powerful technique, as it doesn’t require cooperation from the
tool. Unfortunately it is also very difficult to implement and also not practical
in the general case.

LD_PRELOAD

Rather than use the file system, one could write a special library to intercept
open and other syscalls. This technique is also quite powerful, but unfortunately
it is not portable enough for use in automake.

2.4.1 Recommendations for Tool Writers

We think that every compilation tool ought to be able to generate dependencies as a side
effect of compilation. Furthermore, at least while make-based tools are nearly universally
in use (at least in the free software community), the tool itself should generate dummy
dependencies for header files, to avoid the deleted header file bug. Finally, the tool should
generate a dependency for each probe, instead of each successful file open, in order to avoid
the duplicated new header bug.

2.4.2 Future Directions for Dependencies

Currently, only languages and compilers understood by Automake can have dependency
tracking enabled. We would like to see if it is practical (and worthwhile) to let this support
be extended by the user to languages unknown to Automake.

Chapter 3: Release Statistics 17

3 Release Statistics

The following table (inspired by ‘perlhist(1)’) quantifies the evolution of Automake using
these metrics:

Date, Rel The date and version of the release.

am The number of lines of the automake script.

acl The number of lines of the aclocal script.

pm The number of lines of the Perl supporting modules.

‘*.am’ The number of lines of the ‘Makefile’ fragments. The number in parentheses
is the number of files.

m4 The number of lines (and files) of Autoconf macros.

doc The number of pages of the documentation (the Postscript version).

t The number of test cases in the test suite. Of those, the number in parentheses
is the number of generated test cases.

Date Rel am acl pm ‘*.am’ m4 doc t
1994-09-19 CVS 141 299 (24)
1994-11-05 CVS 208 332 (28)
1995-11-23 0.20 533 458 (35) 9
1995-11-26 0.21 613 480 (36) 11
1995-11-28 0.22 1116 539 (38) 12
1995-11-29 0.23 1240 541 (38) 12
1995-12-08 0.24 1462 504 (33) 14
1995-12-10 0.25 1513 511 (37) 15
1996-01-03 0.26 1706 438 (36) 16
1996-01-03 0.27 1706 438 (36) 16
1996-01-13 0.28 1964 934 (33) 16
1996-02-07 0.29 2299 936 (33) 17
1996-02-24 0.30 2544 919 (32) 85 (1) 20 9
1996-03-11 0.31 2877 919 (32) 85 (1) 29 17
1996-04-27 0.32 3058 921 (31) 85 (1) 30 26
1996-05-18 0.33 3110 926 (31) 105 (1) 30 35
1996-05-28 1.0 3134 973 (32) 105 (1) 30 38
1997-06-22 1.2 6089 385 1294 (36) 592 (20) 37 126
1998-04-05 1.3 6415 422 1470 (39) 741 (23) 39 156
1999-01-14 1.4 7240 426 1591 (40) 734 (20) 51 197
2001-05-08 1.4-p1 7251 426 1591 (40) 734 (20) 51 197
2001-05-24 1.4-p2 7268 439 1591 (40) 734 (20) 49 197
2001-06-07 1.4-p3 7312 439 1591 (40) 734 (20) 49 197
2001-06-10 1.4-p4 7321 439 1591 (40) 734 (20) 49 198
2001-07-15 1.4-p5 7228 426 1596 (40) 734 (20) 51 198
2001-08-23 1.5 8016 475 600 2654 (39) 1166 (29) 63 327
2002-03-05 1.6 8465 475 1136 2732 (39) 1603 (27) 66 365

Chapter 3: Release Statistics 18

2002-04-11 1.6.1 8544 475 1136 2741 (39) 1603 (27) 66 372
2002-06-14 1.6.2 8575 475 1136 2800 (39) 1609 (27) 67 386
2002-07-28 1.6.3 8600 475 1153 2809 (39) 1609 (27) 67 391
2002-07-28 1.4-p6 7332 455 1596 (40) 735 (20) 49 197
2002-09-25 1.7 9189 471 1790 2965 (39) 1606 (28) 73 430
2002-10-16 1.7.1 9229 475 1790 2977 (39) 1606 (28) 73 437
2002-12-06 1.7.2 9334 475 1790 2988 (39) 1606 (28) 77 445
2003-02-20 1.7.3 9389 475 1790 3023 (39) 1651 (29) 84 448
2003-04-23 1.7.4 9429 475 1790 3031 (39) 1644 (29) 85 458
2003-05-18 1.7.5 9429 475 1790 3033 (39) 1645 (29) 85 459
2003-07-10 1.7.6 9442 475 1790 3033 (39) 1660 (29) 85 461
2003-09-07 1.7.7 9443 475 1790 3041 (39) 1660 (29) 90 467
2003-10-07 1.7.8 9444 475 1790 3041 (39) 1660 (29) 90 468
2003-11-09 1.7.9 9444 475 1790 3048 (39) 1660 (29) 90 468
2003-12-10 1.8 7171 585 7730 3236 (39) 1666 (31) 104 521
2004-01-11 1.8.1 7217 663 7726 3287 (39) 1686 (31) 104 525
2004-01-12 1.8.2 7217 663 7726 3288 (39) 1686 (31) 104 526
2004-03-07 1.8.3 7214 686 7735 3303 (39) 1695 (31) 111 530
2004-04-25 1.8.4 7214 686 7736 3310 (39) 1701 (31) 112 531
2004-05-16 1.8.5 7240 686 7736 3299 (39) 1701 (31) 112 533
2004-07-28 1.9 7508 715 7794 3352 (40) 1812 (32) 115 551
2004-08-11 1.9.1 7512 715 7794 3354 (40) 1812 (32) 115 552
2004-09-19 1.9.2 7512 715 7794 3354 (40) 1812 (32) 132 554
2004-11-01 1.9.3 7507 718 7804 3354 (40) 1812 (32) 134 556
2004-12-18 1.9.4 7508 718 7856 3361 (40) 1811 (32) 140 560
2005-02-13 1.9.5 7523 719 7859 3373 (40) 1453 (32) 142 562
2005-07-10 1.9.6 7539 699 7867 3400 (40) 1453 (32) 144 570
2006-10-15 1.10 7859 1072 8024 3512 (40) 1496 (34) 172 604
2008-01-19 1.10.1 7870 1089 8025 3520 (40) 1499 (34) 173 617
2008-11-23 1.10.2 7882 1089 8027 3540 (40) 1509 (34) 176 628
2009-05-17 1.11 8721 1092 8289 4164 (42) 1714 (37) 181 732 (20)

Appendix A: Copying This Manual 19

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix A: Copying This Manual 20

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: Copying This Manual 21

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: Copying This Manual 22

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying This Manual 23

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 24

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: Copying This Manual 25

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 26

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Timeline
	Evolution of Automatic Dependency Tracking
	First Take on Dependency Tracking
	Description
	Bugs
	Historical Note

	Dependencies As Side Effects
	Description
	Bugs

	Dependencies for the User
	Description
	Bugs

	Techniques for Computing Dependencies
	Recommendations for Tool Writers
	Future Directions for Dependencies

	Release Statistics
	Copying This Manual
	GNU Free Documentation License

