
GNU Generic Security Service (GSS) API Reference
Manual

GNU Generic Security Service (GSS) API Reference Manual ii

COLLABORATORS

TITLE :

GNU Generic Security Service (GSS) API Ref-
erence Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY August 6, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GNU Generic Security Service (GSS) API Reference Manual iii

Contents

1 GNU Generic Security Service (GSS) API Reference Manual 1

1.1 gss . 1

1.2 api . 2

1.3 ext . 63

1.4 krb5 . 65

1.5 krb5-ext . 68

2 Index 70

GNU Generic Security Service (GSS) API Reference Manual 1 / 71

Chapter 1

GNU Generic Security Service (GSS) API Refer-
ence Manual

GSS is an implementation of the Generic Security Service Application Program Interface (GSS-API). GSS-API is used by
network servers to provide security services, e.g., to authenticate SMTP/IMAP clients against SMTP/IMAP servers. GSS consists
of a library and a manual.

GSS is developed for the GNU/Linux system, but runs on over 20 platforms including most major Unix platforms and Windows,
and many kind of devices including iPAQ handhelds and S/390 mainframes.

GSS is a GNU project, and is licensed under the GNU General Public License version 3 or later.

1.1 gss

gss —

Types and Values

#define GSS_VERSION
#define GSS_VERSION_MAJOR
#define GSS_VERSION_MINOR
#define GSS_VERSION_PATCH
#define GSS_VERSION_NUMBER

Description

Functions

Types and Values

GSS_VERSION

define GSS_VERSION "1.0.4"

Pre-processor symbol with a string that describe the header file version number. Used together with gss_check_version() to verify
header file and run-time library consistency.

GNU Generic Security Service (GSS) API Reference Manual 2 / 71

GSS_VERSION_MAJOR

define GSS_VERSION_MAJOR 1

Pre-processor symbol with a decimal value that describe the major level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 1.

GSS_VERSION_MINOR

define GSS_VERSION_MINOR 0

Pre-processor symbol with a decimal value that describe the minor level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 2.

GSS_VERSION_PATCH

define GSS_VERSION_PATCH 4

Pre-processor symbol with a decimal value that describe the patch level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 3.

GSS_VERSION_NUMBER

define GSS_VERSION_NUMBER 0x010004

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.3 this symbol will have the value 0x010203.

1.2 api

api —

Functions

#define GSS_CALLING_ERROR()
#define GSS_ROUTINE_ERROR()
#define GSS_SUPPLEMENTARY_INFO()
#define GSS_ERROR()
OM_uint32 gss_acquire_cred ()
OM_uint32 gss_release_cred ()
OM_uint32 gss_init_sec_context ()
OM_uint32 gss_accept_sec_context ()
OM_uint32 gss_process_context_token ()
OM_uint32 gss_delete_sec_context ()
OM_uint32 gss_context_time ()
OM_uint32 gss_get_mic ()
OM_uint32 gss_verify_mic ()
OM_uint32 gss_wrap ()
OM_uint32 gss_unwrap ()
OM_uint32 gss_display_status ()
OM_uint32 gss_indicate_mechs ()

GNU Generic Security Service (GSS) API Reference Manual 3 / 71

OM_uint32 gss_compare_name ()
OM_uint32 gss_display_name ()
OM_uint32 gss_import_name ()
OM_uint32 gss_export_name ()
OM_uint32 gss_release_name ()
OM_uint32 gss_release_buffer ()
OM_uint32 gss_release_oid_set ()
OM_uint32 gss_inquire_cred ()
OM_uint32 gss_inquire_context ()
OM_uint32 gss_wrap_size_limit ()
OM_uint32 gss_add_cred ()
OM_uint32 gss_inquire_cred_by_mech ()
OM_uint32 gss_export_sec_context ()
OM_uint32 gss_import_sec_context ()
OM_uint32 gss_create_empty_oid_set ()
OM_uint32 gss_add_oid_set_member ()
OM_uint32 gss_test_oid_set_member ()
OM_uint32 gss_inquire_names_for_mech ()
OM_uint32 gss_inquire_mechs_for_name ()
OM_uint32 gss_canonicalize_name ()
OM_uint32 gss_duplicate_name ()
OM_uint32 gss_sign ()
OM_uint32 gss_verify ()
OM_uint32 gss_seal ()
OM_uint32 gss_unseal ()
OM_uint32 gss_inquire_saslname_for_mech ()
OM_uint32 gss_inquire_mech_for_saslname ()
int gss_oid_equal ()
OM_uint32 gss_encapsulate_token ()
OM_uint32 gss_decapsulate_token ()

Types and Values

typedef gss_ctx_id_t
typedef gss_cred_id_t
typedef gss_name_t
typedef gss_uint32
typedef OM_uint32
typedef gss_qop_t
typedef gss_cred_usage_t
#define GSS_C_DELEG_FLAG
#define GSS_C_MUTUAL_FLAG
#define GSS_C_REPLAY_FLAG
#define GSS_C_SEQUENCE_FLAG
#define GSS_C_CONF_FLAG
#define GSS_C_INTEG_FLAG
#define GSS_C_ANON_FLAG
#define GSS_C_PROT_READY_FLAG
#define GSS_C_TRANS_FLAG
#define GSS_C_BOTH
#define GSS_C_INITIATE
#define GSS_C_ACCEPT
#define GSS_C_GSS_CODE
#define GSS_C_MECH_CODE
#define GSS_C_AF_UNSPEC
#define GSS_C_AF_LOCAL

GNU Generic Security Service (GSS) API Reference Manual 4 / 71

#define GSS_C_AF_INET
#define GSS_C_AF_IMPLINK
#define GSS_C_AF_PUP
#define GSS_C_AF_CHAOS
#define GSS_C_AF_NS
#define GSS_C_AF_NBS
#define GSS_C_AF_ECMA
#define GSS_C_AF_DATAKIT
#define GSS_C_AF_CCITT
#define GSS_C_AF_SNA
#define GSS_C_AF_DECnet
#define GSS_C_AF_DLI
#define GSS_C_AF_LAT
#define GSS_C_AF_HYLINK
#define GSS_C_AF_APPLETALK
#define GSS_C_AF_BSC
#define GSS_C_AF_DSS
#define GSS_C_AF_OSI
#define GSS_C_AF_X25
#define GSS_C_AF_NULLADDR
#define GSS_C_NO_NAME
#define GSS_C_NO_BUFFER
#define GSS_C_NO_OID
#define GSS_C_NO_OID_SET
#define GSS_C_NO_CONTEXT
#define GSS_C_NO_CREDENTIAL
#define GSS_C_NO_CHANNEL_BINDINGS
#define GSS_C_EMPTY_BUFFER
#define GSS_C_NULL_OID
#define GSS_C_NULL_OID_SET
#define GSS_C_QOP_DEFAULT
#define GSS_C_INDEFINITE
extern gss_OID GSS_C_NT_USER_NAME
extern gss_OID GSS_C_NT_MACHINE_UID_NAME
extern gss_OID GSS_C_NT_STRING_UID_NAME
extern gss_OID GSS_C_NT_HOSTBASED_SERVICE_X
extern gss_OID GSS_C_NT_HOSTBASED_SERVICE
extern gss_OID GSS_C_NT_ANONYMOUS
extern gss_OID GSS_C_NT_EXPORT_NAME
#define GSS_S_COMPLETE
#define GSS_C_CALLING_ERROR_OFFSET
#define GSS_C_ROUTINE_ERROR_OFFSET
#define GSS_C_SUPPLEMENTARY_OFFSET
#define GSS_C_CALLING_ERROR_MASK
#define GSS_C_ROUTINE_ERROR_MASK
#define GSS_C_SUPPLEMENTARY_MASK
#define GSS_S_CALL_INACCESSIBLE_READ
#define GSS_S_CALL_INACCESSIBLE_WRITE
#define GSS_S_CALL_BAD_STRUCTURE
#define GSS_S_BAD_MECH
#define GSS_S_BAD_NAME
#define GSS_S_BAD_NAMETYPE
#define GSS_S_BAD_BINDINGS
#define GSS_S_BAD_STATUS
#define GSS_S_BAD_SIG
#define GSS_S_BAD_MIC

GNU Generic Security Service (GSS) API Reference Manual 5 / 71

#define GSS_S_NO_CRED
#define GSS_S_NO_CONTEXT
#define GSS_S_DEFECTIVE_TOKEN
#define GSS_S_DEFECTIVE_CREDENTIAL
#define GSS_S_CREDENTIALS_EXPIRED
#define GSS_S_CONTEXT_EXPIRED
#define GSS_S_FAILURE
#define GSS_S_BAD_QOP
#define GSS_S_UNAUTHORIZED
#define GSS_S_UNAVAILABLE
#define GSS_S_DUPLICATE_ELEMENT
#define GSS_S_NAME_NOT_MN
#define GSS_S_CONTINUE_NEEDED
#define GSS_S_DUPLICATE_TOKEN
#define GSS_S_OLD_TOKEN
#define GSS_S_UNSEQ_TOKEN
#define GSS_S_GAP_TOKEN
typedef gss_const_buffer_t
typedef gss_const_ctx_id_t
typedef gss_const_cred_id_t
typedef gss_const_name_t
typedef gss_const_OID
typedef gss_const_OID_set

Description

Functions

GSS_CALLING_ERROR()

#define GSS_CALLING_ERROR(x)

GSS_ROUTINE_ERROR()

#define GSS_ROUTINE_ERROR(x)

GSS_SUPPLEMENTARY_INFO()

#define GSS_SUPPLEMENTARY_INFO(x)

GSS_ERROR()

#define GSS_ERROR(x)

gss_acquire_cred ()

OM_uint32
gss_acquire_cred (OM_uint32 *minor_status,

const gss_name_t desired_name,
OM_uint32 time_req,
const gss_OID_set desired_mechs,

GNU Generic Security Service (GSS) API Reference Manual 6 / 71

gss_cred_usage_t cred_usage,
gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs,
OM_uint32 *time_rec);

Allows an application to acquire a handle for a pre-existing credential by name. GSS-API implementations must impose a local
access-control policy on callers of this routine to prevent unauthorized callers from acquiring credentials to which they are not
entitled. This routine is not intended to provide a "login to the network" function, as such a function would involve the creation
of new credentials rather than merely acquiring a handle to existing credentials. Such functions, if required, should be defined in
implementation-specific extensions to the API.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential handle that will invoke default behavior
when passed to gss_init_sec_context() (if cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context() (if
cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

Mechanisms should honor the desired_mechs parameter, and return a credential that is suitable to use only with the requested
mechanisms. An exception to this is the case where one underlying credential element can be shared by multiple mechanisms;
in this case it is permissible for an implementation to indicate all mechanisms with which the credential element may be used. If
desired_mechs is an empty set, behavior is undefined.

This routine is expected to be used primarily by context acceptors, since implementations are likely to provide mechanism-
specific ways of obtaining GSS-API initiator credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via gss_acquire_cred for any name other than
GSS_C_NO_NAME, or a name produced by applying either gss_inquire_cred to a valid credential, or gss_inquire_context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to delay the actual acquisition until
the credential is required (e.g. by gss_init_sec_context or gss_accept_sec_context). Such mechanism-specific implementa-
tion decisions should be invisible to the calling application; thus a call of gss_inquire_cred immediately following the call of
gss_acquire_cred must return valid credential data, and may therefore incur the overhead of a deferred credential acquisition.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

desired_name
(gss_name_t, read) Name of
principal whose credential
should be acquired.

time_req

(Integer, read, optional)
Number of seconds that
credentials should remain
valid. Specify
GSS_C_INDEFINITE to
request that the credentials
have the maximum
permitted lifetime.

desired_mechs

(Set of Object IDs, read,
optional) Set of underlying
security mechanisms that
may be used.
GSS_C_NO_OID_SET
may be used to obtain an
implementation-specific
default.

GNU Generic Security Service (GSS) API Reference Manual 7 / 71

cred_usage

(gss_cred_usage_t, read)
GSS_C_BOTH -
Credentials may be used
either to initiate or accept
security contexts.
GSS_C_INITIATE -
Credentials will only be
used to initiate security
contexts. GSS_C_ACCEPT
- Credentials will only be
used to accept security
contexts.

output_cred_handle

(gss_cred_id_t, modify)
The returned credential
handle. Resources
associated with this
credential handle must be
released by the application
after use with a call to
gss_release_cred().

actual_mechs

(Set of Object IDs, modify,
optional) The set of
mechanisms for which the
credential is valid. Storage
associated with the returned
OID-set must be released
by the application after use
with a call to
gss_release_oid_set().
Specify NULL if not
required.

time_rec

(Integer, modify, optional)
Actual number of seconds
for which the returned
credentials will remain
valid. If the implementation
does not support expiration
of credentials, the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE: Type contained within desired_name parameter is not supported.

GSS_S_BAD_NAME: Value supplied for desired_name parameter is ill formed.

GSS_S_CREDENTIALS_EXPIRED: The credentials could not be acquired Because they have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.

gss_release_cred ()

GNU Generic Security Service (GSS) API Reference Manual 8 / 71

OM_uint32
gss_release_cred (OM_uint32 *minor_status,

gss_cred_id_t *cred_handle);

Informs GSS-API that the specified credential handle is no longer required by the application, and frees associated resources.
The cred_handle is set to GSS_C_NO_CREDENTIAL on successful completion of this call.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

cred_handle

(gss_cred_id_t, modify,
optional) Opaque handle
identifying credential to be
released. If
GSS_C_NO_CREDENTIAL
is supplied, the routine will
complete successfully, but
will do nothing.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CRED: Credentials could not be accessed.

gss_init_sec_context ()

OM_uint32
gss_init_sec_context (OM_uint32 *minor_status,

const gss_cred_id_t initiator_cred_handle,
gss_ctx_id_t *context_handle,
const gss_name_t target_name,
const gss_OID mech_type,
OM_uint32 req_flags,
OM_uint32 time_req,
const gss_channel_bindings_t input_chan_bindings,
const gss_buffer_t input_token,
gss_OID *actual_mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,
OM_uint32 *time_rec);

Initiates the establishment of a security context between the application and a remote peer. Initially, the input_token parameter
should be specified either as GSS_C_NO_BUFFER, or as a pointer to a gss_buffer_desc object whose length field contains
the value zero. The routine may return a output_token which should be transferred to the peer application, where the peer
application will present it to gss_accept_sec_context. If no token need be sent, gss_init_sec_context will indicate this by setting
the length field of the output_token argument to zero. To complete the context establishment, one or more reply tokens may be
required from the peer application; if so, gss_init_sec_context will return a status containing the supplementary information bit
GSS_S_CONTINUE_NEEDED. In this case, gss_init_sec_context should be called again when the reply token is received from
the peer application, passing the reply token to gss_init_sec_context via the input_token parameters.

Portable applications should be constructed to use the token length and return status to determine whether a token needs to be
sent or waited for. Thus a typical portable caller should always invoke gss_init_sec_context within a loop:

GNU Generic Security Service (GSS) API Reference Manual 9 / 71

Portable applications should be constructed to use the token length and return status to determine whether a token
needs to be sent or waited for. Thus a typical portable caller should always invoke gss_init_sec_context within a loop:

int context_established = 0; gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT; ... input_token->length = 0;

while (!context_established) { maj_stat = gss_init_sec_context(&min_stat, cred_hdl, &context_hdl, target_name, desired_mech,
desired_services, desired_time, input_bindings, input_token, &actual_mech, output_token, &actual_services, &actual_time); if
(GSS_ERROR(maj_stat)) { report_error(maj_stat, min_stat); };

if (output_token->length != 0) { send_token_to_peer(output_token); gss_release_buffer(&min_stat, output_token) }; if (GSS_ERROR(maj_stat))
{

if (context_hdl != GSS_C_NO_CONTEXT) gss_delete_sec_context(&min_stat, &context_hdl, GSS_C_NO_BUFFER); break;
};

if (maj_stat & GSS_S_CONTINUE_NEEDED) { receive_token_from_peer(input_token); } else { context_established = 1; };

};

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED, the context is not fully
established and the following restrictions apply to the output parameters:

• The value returned via the time_rec parameter is undefined unless the accompanying ret_flags parameter contains the bit
GSS_C_PROT_READY_FLAG, indicating that per-message services may be applied in advance of a successful completion
status, the value returned via the actual_mech_type parameter is undefined until the routine returns a major status value of
GSS_S_COMPLETE.

• The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG, GSS_C_SEQUENCE_FLAG,
GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits returned via the ret_flags parameter should
contain the values that the implementation expects would be valid if context establishment were to succeed. In particular, if
the application has requested a service such as delegation or anonymous authentication via the req_flags argument, and such a
service is unavailable from the underlying mechanism, gss_init_sec_context should generate a token that will not provide the
service, and indicate via the ret_flags argument that the service will not be supported. The application may choose to abort the
context establishment by calling gss_delete_sec_context (if it cannot continue in the absence of the service), or it may choose
to transmit the token and continue context establishment (if the service was merely desired but not mandatory).

• The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags should indicate the actual
state at the time gss_init_sec_context returns, whether or not the context is fully established.

• GSS-API implementations that support per-message protection are encouraged to set the GSS_C_PROT_READY_FLAG in
the final ret_flags returned to a caller (i.e. when accompanied by a GSS_S_COMPLETE status code). However, applications
should not rely on this behavior as the flag was not defined in Version 1 of the GSS-API. Instead, applications should determine
what per-message services are available after a successful context establishment according to the GSS_C_INTEG_FLAG and
GSS_C_CONF_FLAG values.

• All other bits within the ret_flags argument should be set to zero.

If the initial call of gss_init_sec_context() fails, the implementation should not create a context object, and should leave the value
of the context_handle parameter set to GSS_C_NO_CONTEXT to indicate this. In the event of a failure on a subsequent call, the
implementation is permitted to delete the "half-built" security context (in which case it should set the context_handle parameter
to GSS_C_NO_CONTEXT), but the preferred behavior is to leave the security context untouched for the application to delete
(using gss_delete_sec_context).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and GSS_S_DUPLICATE_TOKEN indicate
fatal errors, and GSS-API mechanisms should always return them in association with a routine error of GSS_S_FAILURE. This
requirement for pairing did not exist in version 1 of the GSS-API specification, so applications that wish to run over version 1
implementations must special-case these codes.

The req_flags values:

GSS_C_DELEG_FLAG::

GNU Generic Security Service (GSS) API Reference Manual 10 / 71

• True - Delegate credentials to remote peer.

• False - Don’t delegate.

GSS_C_MUTUAL_FLAG::

• True - Request that remote peer authenticate itself.

• False - Authenticate self to remote peer only.

GSS_C_REPLAY_FLAG::

• True - Enable replay detection for messages protected with gss_wrap or gss_get_mic.

• False - Don’t attempt to detect replayed messages.

GSS_C_SEQUENCE_FLAG::

• True - Enable detection of out-of-sequence protected messages.

• False - Don’t attempt to detect out-of-sequence messages.

GSS_C_CONF_FLAG::

• True - Request that confidentiality service be made available (via gss_wrap).

• False - No per-message confidentiality service is required.

GSS_C_INTEG_FLAG::

• True - Request that integrity service be made available (via gss_wrap or gss_get_mic).

• False - No per-message integrity service is required.

GSS_C_ANON_FLAG::

• True - Do not reveal the initiator’s identity to the acceptor.

• False - Authenticate normally.

The ret_flags values:

GSS_C_DELEG_FLAG::

• True - Credentials were delegated to the remote peer.

• False - No credentials were delegated.

GSS_C_MUTUAL_FLAG::

• True - The remote peer has authenticated itself.

• False - Remote peer has not authenticated itself.

GSS_C_REPLAY_FLAG::

• True - replay of protected messages will be detected.

• False - replayed messages will not be detected.

GNU Generic Security Service (GSS) API Reference Manual 11 / 71

GSS_C_SEQUENCE_FLAG::

• True - out-of-sequence protected messages will be detected.

• False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG::

• True - Confidentiality service may be invoked by calling gss_wrap routine.

• False - No confidentiality service (via gss_wrap) available. gss_wrap will provide message encapsulation, data-origin authen-
tication and integrity services only.

GSS_C_INTEG_FLAG::

• True - Integrity service may be invoked by calling either gss_get_mic or gss_wrap routines.

• False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG::

• True - The initiator’s identity has not been revealed, and will not be revealed if any emitted token is passed to the acceptor.

• False - The initiator’s identity has been or will be authenticated normally.

GSS_C_PROT_READY_FLAG::

• True - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
for use if the accompanying major status return value is either GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED.

• False - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG::

• True - The resultant security context may be transferred to other processes via a call to gss_export_sec_context().

• False - The security context is not transferable.

All other bits should be set to zero.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

initiator_cred_handle

(gss_cred_id_t, read,
optional) Handle for
credentials claimed. Supply
GSS_C_NO_CREDENTIAL
to act as a default initiator
principal. If no default
initiator is defined, the
function will return
GSS_S_NO_CRED.

GNU Generic Security Service (GSS) API Reference Manual 12 / 71

context_handle

(gss_ctx_id_t, read/modify)
Context handle for new
context. Supply
GSS_C_NO_CONTEXT
for first call; use value
returned by first call in
continuation calls.
Resources associated with
this context-handle must be
released by the application
after use with a call to
gss_delete_sec_context().

target_name (gss_name_t, read) Name
of target.

mech_type

(OID, read, optional)
Object ID of desired
mechanism. Supply
GSS_C_NO_OID to obtain
an implementation specific
default.

req_flags

(bit-mask, read) Contains
various independent flags,
each of which requests that
the context support a
specific service option.
Symbolic names are
provided for each flag, and
the symbolic names
corresponding to the
required flags should be
logically-ORed together to
form the bit-mask value.
See below for the flags.

time_req

(Integer, read, optional)
Desired number of seconds
for which context should
remain valid. Supply 0 to
request a default validity
period.

input_chan_bindings

(channel bindings, read,
optional)
Application-specified
bindings. Allows
application to securely bind
channel identification
information to the security
context. Specify
GSS_C_NO_CHANNEL_BINDINGS
if channel bindings are not
used.

GNU Generic Security Service (GSS) API Reference Manual 13 / 71

input_token

(buffer, opaque, read,
optional) Token received
from peer application.
Supply
GSS_C_NO_BUFFER, or a
pointer to a buffer
containing the value
GSS_C_EMPTY_BUFFER
on initial call.

actual_mech_type

(OID, modify, optional)
Actual mechanism used.
The OID returned via this
parameter will be a pointer
to static storage that should
be treated as read-only; In
particular the application
should not attempt to free it.
Specify NULL if not
required.

output_token

(buffer, opaque, modify)
Token to be sent to peer
application. If the length
field of the returned buffer
is zero, no token need be
sent to the peer application.
Storage associated with this
buffer must be freed by the
application after use with a
call to gss_release_buffer().

ret_flags

(bit-mask, modify, optional)
Contains various
independent flags, each of
which indicates that the
context supports a specific
service option. Specify
NULL if not required.
Symbolic names are
provided for each flag, and
the symbolic names
corresponding to the
required flags should be
logically-ANDed with the
ret_flags value to test
whether a given option is
supported by the context.
See below for the flags.

time_rec

(Integer, modify, optional)
Number of seconds for
which the context will
remain valid. If the
implementation does not
support context expiration,
the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

GNU Generic Security Service (GSS) API Reference Manual 14 / 71

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required to complete the context, and that
gss_init_sec_context must be called again with that token.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the credential failed.

GSS_S_NO_CRED: The supplied credentials were not valid for context initiation, or the credential handle did not reference any
credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.

GSS_S_BAD_BINDINGS: The input_token contains different channel bindings to those specified via the input_chan_bindings
parameter.

GSS_S_BAD_SIG: The input_token contains an invalid MIC, or a MIC that could not be verified.

GSS_S_OLD_TOKEN: The input_token was too old. This is a fatal error during context establishment.

GSS_S_DUPLICATE_TOKEN: The input_token is valid, but is a duplicate of a token already processed. This is a fatal error
during context establishment.

GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a valid context.

GSS_S_BAD_NAMETYPE: The provided target_name parameter contained an invalid or unsupported type of name.

GSS_S_BAD_NAME: The provided target_name parameter was ill-formed.

GSS_S_BAD_MECH: The specified mechanism is not supported by the provided credential, or is unrecognized by the implemen-
tation.

gss_accept_sec_context ()

OM_uint32
gss_accept_sec_context (OM_uint32 *minor_status,

gss_ctx_id_t *context_handle,
const gss_cred_id_t acceptor_cred_handle,
const gss_buffer_t input_token_buffer,
const gss_channel_bindings_t input_chan_bindings,
gss_name_t *src_name,
gss_OID *mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,
OM_uint32 *time_rec,
gss_cred_id_t *delegated_cred_handle);

Allows a remotely initiated security context between the application and a remote peer to be established. The routine may return a
output_token which should be transferred to the peer application, where the peer application will present it to gss_init_sec_context.
If no token need be sent, gss_accept_sec_context will indicate this by setting the length field of the output_token argument
to zero. To complete the context establishment, one or more reply tokens may be required from the peer application; if so,
gss_accept_sec_context will return a status flag of GSS_S_CONTINUE_NEEDED, in which case it should be called again when
the reply token is received from the peer application, passing the token to gss_accept_sec_context via the input_token parameters.

Portable applications should be constructed to use the token length and return status to determine whether a token needs to be
sent or waited for. Thus a typical portable caller should always invoke gss_accept_sec_context within a loop:

GNU Generic Security Service (GSS) API Reference Manual 15 / 71

Portable applications should be constructed to use the token length and return status to determine whether a token
needs to be sent or waited for. Thus a typical portable caller should always invoke gss_accept_sec_context within a
loop:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do { receive_token_from_peer(input_token); maj_stat = gss_accept_sec_context(&min_stat, &context_hdl, cred_hdl, input_token,
input_bindings, &client_name, &mech_type, output_token, &ret_flags, &time_rec, &deleg_cred); if (GSS_ERROR(maj_stat))
{ report_error(maj_stat, min_stat); }; if (output_token->length != 0) { send_token_to_peer(output_token);

gss_release_buffer(&min_stat, output_token); }; if (GSS_ERROR(maj_stat)) { if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context(&min_stat, &context_hdl, GSS_C_NO_BUFFER); break; };

} while (maj_stat & GSS_S_CONTINUE_NEEDED);

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED, the context is not fully
established and the following restrictions apply to the output parameters:

The value returned via the time_rec parameter is undefined Unless the accompanying ret_flags parameter contains the bit
GSS_C_PROT_READY_FLAG, indicating that per-message services may be applied in advance of a successful completion
status, the value returned via the mech_type parameter may be undefined until the routine returns a major status value of
GSS_S_COMPLETE.

The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG,GSS_C_REPLAY_FLAG, GSS_C_SEQUENCE_FLAG,
GSS_C_CONF_FLAG,GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits returned via the ret_flags parameter should con-
tain the values that the implementation expects would be valid if context establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags should indicate the actual
state at the time gss_accept_sec_context returns, whether or not the context is fully established.

Although this requires that GSS-API implementations set the GSS_C_PROT_READY_FLAG in the final ret_flags returned to
a caller (i.e. when accompanied by a GSS_S_COMPLETE status code), applications should not rely on this behavior as the
flag was not defined in Version 1 of the GSS-API. Instead, applications should be prepared to use per-message services after a
successful context establishment, according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument should be set to zero. While the routine returns GSS_S_CONTINUE_NEEDED,
the values returned via the ret_flags argument indicate the services that the implementation expects to be available from the
established context.

If the initial call of gss_accept_sec_context() fails, the implementation should not create a context object, and should leave the
value of the context_handle parameter set to GSS_C_NO_CONTEXT to indicate this. In the event of a failure on a subsequent
call, the implementation is permitted to delete the "half-built" security context (in which case it should set the context_handle
parameter to GSS_C_NO_CONTEXT), but the preferred behavior is to leave the security context (and the context_handle pa-
rameter) untouched for the application to delete (using gss_delete_sec_context).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and GSS_S_DUPLICATE_TOKEN indicate
fatal errors, and GSS-API mechanisms should always return them in association with a routine error of GSS_S_FAILURE. This
requirement for pairing did not exist in version 1 of the GSS-API specification, so applications that wish to run over version 1
implementations must special-case these codes.

The ret_flags values:

GSS_C_DELEG_FLAG::

• True - Delegated credentials are available via the delegated_cred_handle parameter.

• False - No credentials were delegated.

GSS_C_MUTUAL_FLAG::

• True - Remote peer asked for mutual authentication.

• False - Remote peer did not ask for mutual authentication.

GNU Generic Security Service (GSS) API Reference Manual 16 / 71

GSS_C_REPLAY_FLAG::

• True - replay of protected messages will be detected.

• False - replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG::

• True - out-of-sequence protected messages will be detected.

• False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG::

• True - Confidentiality service may be invoked by calling the gss_wrap routine.

• False - No confidentiality service (via gss_wrap) available. gss_wrap will provide message encapsulation, data-origin authen-
tication and integrity services only.

GSS_C_INTEG_FLAG::

• True - Integrity service may be invoked by calling either gss_get_mic or gss_wrap routines.

• False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG::

• True - The initiator does not wish to be authenticated; the src_name parameter (if requested) contains an anonymous internal
name.

• False - The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG::

• True - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
if the accompanying major status return value is either GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED.

• False - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG::

• True - The resultant security context may be transferred to other processes via a call to gss_export_sec_context().

• False - The security context is not transferable.

All other bits should be set to zero.

GNU Generic Security Service (GSS) API Reference Manual 17 / 71

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle

(gss_ctx_id_t, read/modify)
Context handle for new
context. Supply
GSS_C_NO_CONTEXT
for first call; use value
returned in subsequent
calls. Once
gss_accept_sec_context()
has returned a value via this
parameter, resources have
been assigned to the
corresponding context, and
must be freed by the
application after use with a
call to
gss_delete_sec_context().

acceptor_cred_handle

(gss_cred_id_t, read)
Credential handle claimed
by context acceptor. Specify
GSS_C_NO_CREDENTIAL
to accept the context as a
default principal. If
GSS_C_NO_CREDENTIAL
is specified, but no default
acceptor principal is
defined,
GSS_S_NO_CRED will be
returned.

input_token_buffer
(buffer, opaque, read)
Token obtained from
remote application.

input_chan_bindings

(channel bindings, read,
optional) Application-
specified bindings. Allows
application to securely bind
channel identification
information to the security
context. If channel bindings
are not used, specify
GSS_C_NO_CHANNEL_BINDINGS.

src_name

(gss_name_t, modify,
optional) Authenticated
name of context initiator.
After use, this name should
be deallocated by passing it
to gss_release_name(). If
not required, specify
NULL.

GNU Generic Security Service (GSS) API Reference Manual 18 / 71

mech_type

(Object ID, modify,
optional) Security
mechanism used. The
returned OID value will be
a pointer into static storage,
and should be treated as
read-only by the caller (in
particular, it does not need
to be freed). If not required,
specify NULL.

output_token

(buffer, opaque, modify)
Token to be passed to peer
application. If the length
field of the returned token
buffer is 0, then no token
need be passed to the peer
application. If a non- zero
length field is returned, the
associated storage must be
freed after use by the
application with a call to
gss_release_buffer().

ret_flags

(bit-mask, modify, optional)
Contains various
independent flags, each of
which indicates that the
context supports a specific
service option. If not
needed, specify NULL.
Symbolic names are
provided for each flag, and
the symbolic names
corresponding to the
required flags should be
logically-ANDed with the
ret_flags value to test
whether a given option is
supported by the context.
See below for the flags.

time_rec

(Integer, modify, optional)
Number of seconds for
which the context will
remain valid. Specify
NULL if not required.

GNU Generic Security Service (GSS) API Reference Manual 19 / 71

delegated_cred_handle

(gss_cred_id_t, modify,
optional credential) Handle
for credentials received
from context initiator. Only
valid if deleg_flag in
ret_flags is true, in which
case an explicit credential
handle (i.e. not
GSS_C_NO_CREDENTIAL)
will be returned; if
deleg_flag is false,
gss_accept_sec_context()
will set this parameter to
GSS_C_NO_CREDENTIAL.
If a credential handle is
returned, the associated
resources must be released
by the application after use
with a call to
gss_release_cred(). Specify
NULL if not required.

Returns

GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required to complete the context, and that
gss_accept_sec_context must be called again with that token.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the credential failed.

GSS_S_NO_CRED: The supplied credentials were not valid for context acceptance, or the credential handle did not reference
any credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.

GSS_S_BAD_BINDINGS: The input_token contains different channel bindings to those specified via the input_chan_bindings
parameter.

GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a valid context.

GSS_S_BAD_SIG: The input_token contains an invalid MIC.

GSS_S_OLD_TOKEN: The input_token was too old. This is a fatal error during context establishment.

GSS_S_DUPLICATE_TOKEN: The input_token is valid, but is a duplicate of a token already processed. This is a fatal error
during context establishment.

GSS_S_BAD_MECH: The received token specified a mechanism that is not supported by the implementation or the provided
credential.

gss_process_context_token ()

OM_uint32
gss_process_context_token (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
const gss_buffer_t token_buffer);

Provides a way to pass an asynchronous token to the security service. Most context-level tokens are emitted and processed
synchronously by gss_init_sec_context and gss_accept_sec_context, and the application is informed as to whether further tokens
are expected by the GSS_C_CONTINUE_NEEDED major status bit. Occasionally, a mechanism may need to emit a context-
level token at a point when the peer entity is not expecting a token. For example, the initiator’s final call to gss_init_sec_context

GNU Generic Security Service (GSS) API Reference Manual 20 / 71

may emit a token and return a status of GSS_S_COMPLETE, but the acceptor’s call to gss_accept_sec_context may fail. The
acceptor’s mechanism may wish to send a token containing an error indication to the initiator, but the initiator is not expecting
a token at this point, believing that the context is fully established. Gss_process_context_token provides a way to pass such a
token to the mechanism at any time.

Parameters

minor_status
(Integer, modify)
Implementation specific
status code.

context_handle

(gss_ctx_id_t, read)
Context handle of context
on which token is to be
processed

token_buffer (buffer, opaque, read)
Token to process.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the token failed.

GSS_S_NO_CONTEXT: The context_handle did not refer to a valid context.

gss_delete_sec_context ()

OM_uint32
gss_delete_sec_context (OM_uint32 *minor_status,

gss_ctx_id_t *context_handle,
gss_buffer_t output_token);

Delete a security context. gss_delete_sec_context will delete the local data structures associated with the specified security
context, and may generate an output_token, which when passed to the peer gss_process_context_token will instruct it to do
likewise. If no token is required by the mechanism, the GSS-API should set the length field of the output_token (if provided) to
zero. No further security services may be obtained using the context specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context must also be able to delete "half-built" security
contexts resulting from an incomplete sequence of gss_init_sec_context()/gss_accept_sec_context() calls.

The output_token parameter is retained for compatibility with version 1 of the GSS-API. It is recommended that both peer
applications invoke gss_delete_sec_context passing the value GSS_C_NO_BUFFER for the output_token parameter, indicating
that no token is required, and that gss_delete_sec_context should simply delete local context data structures. If the application
does pass a valid buffer to gss_delete_sec_context, mechanisms are encouraged to return a zero-length token, indicating that no
peer action is necessary, and that no token should be transferred by the application.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle

(gss_ctx_id_t, modify)
Context handle identifying
context to delete. After
deleting the context, the
GSS-API will set this
context handle to
GSS_C_NO_CONTEXT.

GNU Generic Security Service (GSS) API Reference Manual 21 / 71

output_token

(buffer, opaque, modify,
optional) Token to be sent
to remote application to
instruct it to also delete the
context. It is recommended
that applications specify
GSS_C_NO_BUFFER for
this parameter, requesting
local deletion only. If a
buffer parameter is
provided by the application,
the mechanism may return
a token in it; mechanisms
that implement only local
deletion should set the
length field of this token to
zero to indicate to the
application that no token is
to be sent to the peer.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: No valid context was supplied.

gss_context_time ()

OM_uint32
gss_context_time (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
OM_uint32 *time_rec);

Determines the number of seconds for which the specified context will remain valid.

Parameters

minor_status
(Integer, modify)
Implementation specific
status code.

context_handle
(gss_ctx_id_t, read)
Identifies the context to be
interrogated.

time_rec

(Integer, modify) Number
of seconds that the context
will remain valid. If the
context has already expired,
zero will be returned.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context

GNU Generic Security Service (GSS) API Reference Manual 22 / 71

gss_get_mic ()

OM_uint32
gss_get_mic (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
gss_qop_t qop_req,
const gss_buffer_t message_buffer,
gss_buffer_t message_token);

Generates a cryptographic MIC for the supplied message, and places the MIC in a token for transfer to the peer application. The
qop_req parameter allows a choice between several cryptographic algorithms, if supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to provide "secure framing", implementa-
tions must support derivation of MICs from zero-length messages.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle

(gss_ctx_id_t, read)
Identifies the context on
which the message will be
sent.

qop_req

(gss_qop_t, read, optional)
Specifies requested quality
of protection. Callers are
encouraged, on portability
grounds, to accept the
default quality of protection
offered by the chosen
mechanism, which may be
requested by specifying
GSS_C_QOP_DEFAULT
for this parameter. If an
unsupported protection
strength is requested,
gss_get_mic will return a
major_status of
GSS_S_BAD_QOP.

message_buffer (buffer, opaque, read)
Message to be protected.

message_token

(buffer, opaque, modify)
Buffer to receive token. The
application must free
storage associated with this
buffer after use with a call
to gss_release_buffer().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context.

GSS_S_BAD_QOP: The specified QOP is not supported by the mechanism.

GNU Generic Security Service (GSS) API Reference Manual 23 / 71

gss_verify_mic ()

OM_uint32
gss_verify_mic (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
const gss_buffer_t message_buffer,
const gss_buffer_t token_buffer,
gss_qop_t *qop_state);

Verifies that a cryptographic MIC, contained in the token parameter, fits the supplied message. The qop_state parameter allows
a message recipient to determine the strength of protection that was applied to the message.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to provide "secure framing", implementa-
tions must support the calculation and verification of MICs over zero-length messages.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle
(gss_ctx_id_t, read)
Identifies the context on
which the message arrived.

message_buffer (buffer, opaque, read)
Message to be verified.

token_buffer
(buffer, opaque, read)
Token associated with
message.

qop_state

(gss_qop_t, modify,
optional) Quality of
protection gained from MIC
Specify NULL if not
required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_DEFECTIVE_TOKEN: The token failed consistency checks.

GSS_S_BAD_SIG: The MIC was incorrect.

GSS_S_DUPLICATE_TOKEN: The token was valid, and contained a correct MIC for the message, but it had already been
processed.

GSS_S_OLD_TOKEN: The token was valid, and contained a correct MIC for the message, but it is too old to check for duplica-
tion.

GSS_S_UNSEQ_TOKEN: The token was valid, and contained a correct MIC for the message, but has been verified out of
sequence; a later token has already been received.

GSS_S_GAP_TOKEN: The token was valid, and contained a correct MIC for the message, but has been verified out of sequence;
an earlier expected token has not yet been received.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context.

gss_wrap ()

GNU Generic Security Service (GSS) API Reference Manual 24 / 71

OM_uint32
gss_wrap (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
const gss_buffer_t input_message_buffer,
int *conf_state,
gss_buffer_t output_message_buffer);

Attaches a cryptographic MIC and optionally encrypts the specified input_message. The output_message contains both the MIC
and the message. The qop_req parameter allows a choice between several cryptographic algorithms, if supported by the chosen
mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to provide "secure framing", implementa-
tions must support the wrapping of zero-length messages.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle

(gss_ctx_id_t, read)
Identifies the context on
which the message will be
sent.

conf_req_flag

(boolean, read) Non-zero -
Both confidentiality and
integrity services are
requested. Zero - Only
integrity service is
requested.

qop_req

(gss_qop_t, read, optional)
Specifies required quality of
protection. A
mechanism-specific default
may be requested by setting
qop_req to
GSS_C_QOP_DEFAULT.
If an unsupported
protection strength is
requested, gss_wrap will
return a major_status of
GSS_S_BAD_QOP.

input_message_buffer (buffer, opaque, read)
Message to be protected.

conf_state

(boolean, modify, optional)
Non-zero - Confidentiality,
data origin authentication
and integrity services have
been applied. Zero -
Integrity and data origin
services only has been
applied. Specify NULL if
not required.

GNU Generic Security Service (GSS) API Reference Manual 25 / 71

output_message_buffer

(buffer, opaque, modify)
Buffer to receive protected
message. Storage
associated with this
message must be freed by
the application after use
with a call to
gss_release_buffer().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context.

GSS_S_BAD_QOP: The specified QOP is not supported by the mechanism.

gss_unwrap ()

OM_uint32
gss_unwrap (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
const gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int *conf_state,
gss_qop_t *qop_state);

Converts a message previously protected by gss_wrap back to a usable form, verifying the embedded MIC. The conf_state
parameter indicates whether the message was encrypted; the qop_state parameter indicates the strength of protection that was
used to provide the confidentiality and integrity services.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to provide "secure framing", implementa-
tions must support the wrapping and unwrapping of zero-length messages.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle
(gss_ctx_id_t, read)
Identifies the context on
which the message arrived.

input_message_buffer (buffer, opaque, read)
Protected message.

output_message_buffer

(buffer, opaque, modify)
Buffer to receive
unwrapped message.
Storage associated with this
buffer must be freed by the
application after use use
with a call to
gss_release_buffer().

GNU Generic Security Service (GSS) API Reference Manual 26 / 71

conf_state

(boolean, modify, optional)
Non-zero - Confidentiality
and integrity protection
were used. Zero - Integrity
service only was used.
Specify NULL if not
required.

qop_state

(gss_qop_t, modify,
optional) Quality of
protection provided.
Specify NULL if not
required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_DEFECTIVE_TOKEN: The token failed consistency checks.

GSS_S_BAD_SIG: The MIC was incorrect.

GSS_S_DUPLICATE_TOKEN: The token was valid, and contained a correct MIC for the message, but it had already been
processed.

GSS_S_OLD_TOKEN: The token was valid, and contained a correct MIC for the message, but it is too old to check for duplica-
tion.

GSS_S_UNSEQ_TOKEN: The token was valid, and contained a correct MIC for the message, but has been verified out of
sequence; a later token has already been received.

GSS_S_GAP_TOKEN: The token was valid, and contained a correct MIC for the message, but has been verified out of sequence;
an earlier expected token has not yet been received.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context.

gss_display_status ()

OM_uint32
gss_display_status (OM_uint32 *minor_status,

OM_uint32 status_value,
int status_type,
const gss_OID mech_type,
OM_uint32 *message_context,
gss_buffer_t status_string);

Allows an application to obtain a textual representation of a GSS-API status code, for display to the user or for logging purposes.
Since some status values may indicate multiple conditions, applications may need to call gss_display_status multiple times, each
call generating a single text string. The message_context parameter is used by gss_display_status to store state information
about which error messages have already been extracted from a given status_value; message_context must be initialized to 0 by
the application prior to the first call, and gss_display_status will return a non-zero value in this parameter if there are further
messages to extract.

The message_context parameter contains all state information required by gss_display_status in order to extract further mes-
sages from the status_value; even when a non-zero value is returned in this parameter, the application is not required to call
gss_display_status again unless subsequent messages are desired. The following code extracts all messages from a given status
code and prints them to stderr:

GNU Generic Security Service (GSS) API Reference Manual 27 / 71

The message_context parameter contains all state information required by gss_display_status in order to extract further
messages from the status_value; even when a non-zero value is returned in this parameter, the application is not required
to call gss_display_status again unless subsequent messages are desired. The following code extracts all messages
from a given status code and prints them to stderr:

OM_uint32 message_context; OM_uint32 status_code; OM_uint32 maj_status; OM_uint32 min_status; gss_buffer_desc sta-
tus_string;

...

message_context = 0;

do { maj_status = gss_display_status (&min_status, status_code, GSS_C_GSS_CODE, GSS_C_NO_OID, &message_context,
&status_string)

fprintf(stderr, "%.*s\n", (int)status_string.length,

(char *)status_string.value);

gss_release_buffer(&min_status, &status_string);

} while (message_context != 0);

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

status_value (Integer, read) Status value
to be converted.

status_type

(Integer, read)
GSS_C_GSS_CODE -
status_value is a GSS status
code.
GSS_C_MECH_CODE -
status_value is a
mechanism status code.

mech_type

(Object ID, read, optional)
Underlying mechanism
(used to interpret a minor
status value). Supply
GSS_C_NO_OID to obtain
the system default.

message_context

(Integer, read/modify)
Should be initialized to zero
by the application prior to
the first call. On return
from gss_display_status(), a
non-zero status_value
parameter indicates that
additional messages may be
extracted from the status
code via subsequent calls to
gss_display_status(),
passing the same
status_value, status_type,
mech_type, and
message_context
parameters.

GNU Generic Security Service (GSS) API Reference Manual 28 / 71

status_string

(buffer, character string,
modify) Textual
interpretation of the
status_value. Storage
associated with this
parameter must be freed by
the application after use
with a call to
gss_release_buffer().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Indicates that translation in accordance with an unsupported mechanism type was requested.

GSS_S_BAD_STATUS: The status value was not recognized, or the status type was neither GSS_C_GSS_CODE nor GSS_C_MECH_CODE.

gss_indicate_mechs ()

OM_uint32
gss_indicate_mechs (OM_uint32 *minor_status,

gss_OID_set *mech_set);

Allows an application to determine which underlying security mechanisms are available.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

mech_set

(set of Object IDs, modify)
Set of
implementation-supported
mechanisms. The returned
gss_OID_set value will be a
dynamically-allocated OID
set, that should be released
by the caller after use with a
call to
gss_release_oid_set().

Returns

GSS_S_COMPLETE: Successful completion.

gss_compare_name ()

OM_uint32
gss_compare_name (OM_uint32 *minor_status,

const gss_name_t name1,
const gss_name_t name2,
int *name_equal);

Allows an application to compare two internal-form names to determine whether they refer to the same entity.

GNU Generic Security Service (GSS) API Reference Manual 29 / 71

If either name presented to gss_compare_name denotes an anonymous principal, the routines should indicate that the two names
do not refer to the same identity.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

name1 (gss_name_t, read)
Internal-form name.

name2 (gss_name_t, read)
Internal-form name.

name_equal

(boolean, modify) Non-zero
- names refer to same entity.
Zero - names refer to
different entities (strictly,
the names are not known to
refer to the same identity).

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAMETYPE: The two names were of incomparable types.

GSS_S_BAD_NAME: One or both of name1 or name2 was ill-formed.

gss_display_name ()

OM_uint32
gss_display_name (OM_uint32 *minor_status,

const gss_name_t input_name,
gss_buffer_t output_name_buffer,
gss_OID *output_name_type);

Allows an application to obtain a textual representation of an opaque internal-form name for display purposes. The syntax of a
printable name is defined by the GSS-API implementation.

If input_name denotes an anonymous principal, the implementation should return the gss_OID value GSS_C_NT_ANONYMOUS
as the output_name_type, and a textual name that is syntactically distinct from all valid supported printable names in out-
put_name_buffer.

If input_name was created by a call to gss_import_name, specifying GSS_C_NO_OID as the name-type, implementations that
employ lazy conversion between name types may return GSS_C_NO_OID via the output_name_type parameter.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

input_name (gss_name_t, read) Name to
be displayed.

GNU Generic Security Service (GSS) API Reference Manual 30 / 71

output_name_buffer

(buffer, character-string,
modify) Buffer to receive
textual name string. The
application must free
storage associated with this
name after use with a call to
gss_release_buffer().

output_name_type

(Object ID, modify,
optional) The type of the
returned name. The
returned gss_OID will be a
pointer into static storage,
and should be treated as
read-only by the caller (in
particular, the application
should not attempt to free
it). Specify NULL if not
required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAME: input_name was ill-formed.

gss_import_name ()

OM_uint32
gss_import_name (OM_uint32 *minor_status,

const gss_buffer_t input_name_buffer,
const gss_OID input_name_type,
gss_name_t *output_name);

Convert a contiguous string name to internal form. In general, the internal name returned (via the output_name parameter)
will not be an MN; the exception to this is if the input_name_type indicates that the contiguous string provided via the
input_name_buffer parameter is of type GSS_C_NT_EXPORT_NAME, in which case the returned internal name will be an
MN for the mechanism that exported the name.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

input_name_buffer

(buffer, octet-string, read)
Buffer containing
contiguous string name to
convert.

GNU Generic Security Service (GSS) API Reference Manual 31 / 71

input_name_type

(Object ID, read, optional)
Object ID specifying type
of printable name.
Applications may specify
either GSS_C_NO_OID to
use a mechanism-specific
default printable syntax, or
an OID recognized by the
GSS-API implementation
to name a specific
namespace.

output_name

(gss_name_t, modify)
Returned name in internal
form. Storage associated
with this name must be
freed by the application
after use with a call to
gss_release_name().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAMETYPE: The input_name_type was unrecognized.

GSS_S_BAD_NAME: The input_name parameter could not be interpreted as a name of the specified type.

GSS_S_BAD_MECH: The input name-type was GSS_C_NT_EXPORT_NAME, but the mechanism contained within the input-
name is not supported.

gss_export_name ()

OM_uint32
gss_export_name (OM_uint32 *minor_status,

const gss_name_t input_name,
gss_buffer_t exported_name);

To produce a canonical contiguous string representation of a mechanism name (MN), suitable for direct comparison (e.g. with
memcmp) for use in authorization functions (e.g. matching entries in an access-control list). The input_name parameter must
specify a valid MN (i.e. an internal name generated by gss_accept_sec_context() or by gss_canonicalize_name()).

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

input_name (gss_name_t, read) The MN
to be exported.

exported_name

(gss_buffer_t, octet-string,
modify) The canonical
contiguous string form of
input_name . Storage
associated with this string
must freed by the
application after use with
gss_release_buffer().

GNU Generic Security Service (GSS) API Reference Manual 32 / 71

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NAME_NOT_MN: The provided internal name was not a mechanism name.

GSS_S_BAD_NAME: The provided internal name was ill-formed.

GSS_S_BAD_NAMETYPE: The internal name was of a type not supported by the GSS-API implementation.

gss_release_name ()

OM_uint32
gss_release_name (OM_uint32 *minor_status,

gss_name_t *name);

Free GSSAPI-allocated storage associated with an internal-form name. The name is set to GSS_C_NO_NAME on successful
completion of this call.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

name (gss_name_t, modify) The
name to be deleted.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAME: The name parameter did not contain a valid name.

gss_release_buffer ()

OM_uint32
gss_release_buffer (OM_uint32 *minor_status,

gss_buffer_t buffer);

Free storage associated with a buffer. The storage must have been allocated by a GSS-API routine. In addition to freeing the
associated storage, the routine will zero the length field in the descriptor to which the buffer parameter refers, and implementations
are encouraged to additionally set the pointer field in the descriptor to NULL. Any buffer object returned by a GSS-API routine
may be passed to gss_release_buffer (even if there is no storage associated with the buffer).

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

buffer

(buffer, modify) The
storage associated with the
buffer will be deleted. The
gss_buffer_desc object will
not be freed, but its length
field will be zeroed.

GNU Generic Security Service (GSS) API Reference Manual 33 / 71

Returns

GSS_S_COMPLETE: Successful completion.

gss_release_oid_set ()

OM_uint32
gss_release_oid_set (OM_uint32 *minor_status,

gss_OID_set *set);

Free storage associated with a GSSAPI-generated gss_OID_set object. The set parameter must refer to an OID-set that was
returned from a GSS-API routine. gss_release_oid_set() will free the storage associated with each individual member OID, the
OID set’s elements array, and the gss_OID_set_desc.

The gss_OID_set parameter is set to GSS_C_NO_OID_SET on successful completion of this routine.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

set

(Set of Object IDs, modify)
The storage associated with
the gss_OID_set will be
deleted.

Returns

GSS_S_COMPLETE: Successful completion.

gss_inquire_cred ()

OM_uint32
gss_inquire_cred (OM_uint32 *minor_status,

const gss_cred_id_t cred_handle,
gss_name_t *name,
OM_uint32 *lifetime,
gss_cred_usage_t *cred_usage,
gss_OID_set *mechanisms);

Obtains information about a credential.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

cred_handle

(gss_cred_id_t, read) A
handle that refers to the
target credential. Specify
GSS_C_NO_CREDENTIAL
to inquire about the default
initiator principal.

GNU Generic Security Service (GSS) API Reference Manual 34 / 71

name

(gss_name_t, modify,
optional) The name whose
identity the credential
asserts. Storage associated
with this name should be
freed by the application
after use with a call to
gss_release_name().
Specify NULL if not
required.

lifetime

(Integer, modify, optional)
The number of seconds for
which the credential will
remain valid. If the
credential has expired, this
parameter will be set to
zero. If the implementation
does not support credential
expiration, the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

cred_usage

(gss_cred_usage_t, modify,
optional) How the
credential may be used.
One of the following:
GSS_C_INITIATE,
GSS_C_ACCEPT,
GSS_C_BOTH. Specify
NULL if not required.

mechanisms

(gss_OID_set, modify,
optional) Set of
mechanisms supported by
the credential. Storage
associated with this OID set
must be freed by the
application after use with a
call to
gss_release_oid_set().
Specify NULL if not
required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CRED: The referenced credentials could not be accessed.

GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the lifetime parameter was not passed as
NULL, it will be set to 0.

gss_inquire_context ()

OM_uint32
gss_inquire_context (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,

GNU Generic Security Service (GSS) API Reference Manual 35 / 71

gss_name_t *src_name,
gss_name_t *targ_name,
OM_uint32 *lifetime_rec,
gss_OID *mech_type,
OM_uint32 *ctx_flags,
int *locally_initiated,
int *open);

Obtains information about a security context. The caller must already have obtained a handle that refers to the context, although
the context need not be fully established.

The ctx_flags values:

GSS_C_DELEG_FLAG::

• True - Credentials were delegated from the initiator to the acceptor.

• False - No credentials were delegated.

GSS_C_MUTUAL_FLAG::

• True - The acceptor was authenticated to the initiator.

• False - The acceptor did not authenticate itself.

GSS_C_REPLAY_FLAG::

• True - replay of protected messages will be detected.

• False - replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG::

• True - out-of-sequence protected messages will be detected.

• False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG::

• True - Confidentiality service may be invoked by calling gss_wrap routine.

• False - No confidentiality service (via gss_wrap) available. gss_wrap will provide message encapsulation, data-origin authen-
tication and integrity services only.

GSS_C_INTEG_FLAG::

• True - Integrity service may be invoked by calling either gss_get_mic or gss_wrap routines.

• False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG::

• True - The initiator’s identity will not be revealed to the acceptor. The src_name parameter (if requested) contains an anony-
mous internal name.

• False - The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG::

GNU Generic Security Service (GSS) API Reference Manual 36 / 71

• True - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
for use.

• False - Protection services (as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
only if the context is fully established (i.e. if the open parameter is non-zero).

GSS_C_TRANS_FLAG::

• True - The resultant security context may be transferred to other processes via a call to gss_export_sec_context().

• False - The security context is not transferable.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle
(gss_ctx_id_t, read) A
handle that refers to the
security context.

src_name

(gss_name_t, modify,
optional) The name of the
context initiator. If the
context was established
using anonymous
authentication, and if the
application invoking
gss_inquire_context is the
context acceptor, an
anonymous name will be
returned. Storage
associated with this name
must be freed by the
application after use with a
call to gss_release_name().
Specify NULL if not
required.

targ_name

(gss_name_t, modify,
optional) The name of the
context acceptor. Storage
associated with this name
must be freed by the
application after use with a
call to gss_release_name().
If the context acceptor did
not authenticate itself, and
if the initiator did not
specify a target name in its
call to
gss_init_sec_context(), the
value GSS_C_NO_NAME
will be returned. Specify
NULL if not required.

GNU Generic Security Service (GSS) API Reference Manual 37 / 71

lifetime_rec

(Integer, modify, optional)
The number of seconds for
which the context will
remain valid. If the context
has expired, this parameter
will be set to zero. If the
implementation does not
support context expiration,
the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

mech_type

(gss_OID, modify,
optional) The security
mechanism providing the
context. The returned OID
will be a pointer to static
storage that should be
treated as read-only by the
application; in particular the
application should not
attempt to free it. Specify
NULL if not required.

ctx_flags

(bit-mask, modify, optional)
Contains various
independent flags, each of
which indicates that the
context supports (or is
expected to support, if
ctx_open is false) a specific
service option. If not
needed, specify NULL.
Symbolic names are
provided for each flag, and
the symbolic names
corresponding to the
required flags should be
logically-ANDed with the
ret_flags value to test
whether a given option is
supported by the context.
See below for the flags.

locally_initiated

(Boolean, modify)
Non-zero if the invoking
application is the context
initiator. Specify NULL if
not required.

open

(Boolean, modify)
Non-zero if the context is
fully established; Zero if a
context-establishment token
is expected from the peer
application. Specify NULL
if not required.

GNU Generic Security Service (GSS) API Reference Manual 38 / 71

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: The referenced context could not be accessed.

gss_wrap_size_limit ()

OM_uint32
gss_wrap_size_limit (OM_uint32 *minor_status,

const gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
OM_uint32 req_output_size,
OM_uint32 *max_input_size);

Allows an application to determine the maximum message size that, if presented to gss_wrap with the same conf_req_flag and
qop_req parameters, will result in an output token containing no more than req_output_size bytes.

This call is intended for use by applications that communicate over protocols that impose a maximum message size. It enables
the application to fragment messages prior to applying protection.

GSS-API implementations are recommended but not required to detect invalid QOP values when gss_wrap_size_limit() is called.
This routine guarantees only a maximum message size, not the availability of specific QOP values for message protection.

Successful completion of this call does not guarantee that gss_wrap will be able to protect a message of length max_input_size
bytes, since this ability may depend on the availability of system resources at the time that gss_wrap is called. However, if the
implementation itself imposes an upper limit on the length of messages that may be processed by gss_wrap, the implementation
should not return a value via max_input_bytes that is greater than this length.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle

(gss_ctx_id_t, read) A
handle that refers to the
security over which the
messages will be sent.

conf_req_flag

(Boolean, read) Indicates
whether gss_wrap will be
asked to apply
confidentiality protection in
addition to integrity
protection. See the routine
description for gss_wrap for
more details.

qop_req

(gss_qop_t, read) Indicates
the level of protection that
gss_wrap will be asked to
provide. See the routine
description for gss_wrap for
more details.

req_output_size
(Integer, read) The desired
maximum size for tokens
emitted by gss_wrap.

GNU Generic Security Service (GSS) API Reference Manual 39 / 71

max_input_size

(Integer, modify) The
maximum input message
size that may be presented
to gss_wrap in order to
guarantee that the emitted
token shall be no larger than
req_output_size bytes.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: The referenced context could not be accessed.

GSS_S_CONTEXT_EXPIRED: The context has expired.

GSS_S_BAD_QOP: The specified QOP is not supported by the mechanism.

gss_add_cred ()

OM_uint32
gss_add_cred (OM_uint32 *minor_status,

const gss_cred_id_t input_cred_handle,
const gss_name_t desired_name,
const gss_OID desired_mech,
gss_cred_usage_t cred_usage,
OM_uint32 initiator_time_req,
OM_uint32 acceptor_time_req,
gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs,
OM_uint32 *initiator_time_rec,
OM_uint32 *acceptor_time_rec);

Adds a credential-element to a credential. The credential-element is identified by the name of the principal to which it refers.
GSS-API implementations must impose a local access-control policy on callers of this routine to prevent unauthorized callers
from acquiring credential-elements to which they are not entitled. This routine is not intended to provide a "login to the network"
function, as such a function would involve the creation of new mechanism-specific authentication data, rather than merely ac-
quiring a GSS-API handle to existing data. Such functions, if required, should be defined in implementation-specific extensions
to the API.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request to add a credential element that will invoke default be-
havior when passed to gss_init_sec_context() (if cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context()
(if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

This routine is expected to be used primarily by context acceptors, since implementations are likely to provide mechanism-
specific ways of obtaining GSS-API initiator credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via gss_acquire_cred for any name other than
GSS_C_NO_NAME, or a name produced by applying either gss_inquire_cred to a valid credential, or gss_inquire_context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to delay the actual acquisition until the
credential is required (e.g. by gss_init_sec_context or gss_accept_sec_context). Such mechanism-specific implementation deci-
sions should be invisible to the calling application; thus a call of gss_inquire_cred immediately following the call of gss_add_cred
must return valid credential data, and may therefore incur the overhead of a deferred credential acquisition.

This routine can be used to either compose a new credential containing all credential-elements of the original in addition to the
newly-acquire credential-element, or to add the new credential- element to an existing credential. If NULL is specified for the out-
put_cred_handle parameter argument, the new credential-element will be added to the credential identified by input_cred_handle;
if a valid pointer is specified for the output_cred_handle parameter, a new credential handle will be created.

If GSS_C_NO_CREDENTIAL is specified as the input_cred_handle, gss_add_cred will compose a credential (and set the out-
put_cred_handle parameter accordingly) based on default behavior. That is, the call will have the same effect as if the application

GNU Generic Security Service (GSS) API Reference Manual 40 / 71

had first made a call to gss_acquire_cred(), specifying the same usage and passing GSS_C_NO_NAME as the desired_name
parameter to obtain an explicit credential handle embodying default behavior, passed this credential handle to gss_add_cred(),
and finally called gss_release_cred() on the first credential handle.

If GSS_C_NO_CREDENTIAL is specified as the input_cred_handle parameter, a non-NULL output_cred_handle must be sup-
plied.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

input_cred_handle

(gss_cred_id_t, read,
optional) The credential to
which a credential-element
will be added. If
GSS_C_NO_CREDENTIAL
is specified, the routine will
compose the new credential
based on default behavior
(see text). Note that, while
the credential-handle is not
modified by
gss_add_cred(), the
underlying credential will
be modified if
output_credential_handle is
NULL.

desired_name

(gss_name_t, read.) Name
of principal whose
credential should be
acquired.

desired_mech

(Object ID, read)
Underlying security
mechanism with which the
credential may be used.

cred_usage

(gss_cred_usage_t, read)
GSS_C_BOTH - Credential
may be used either to
initiate or accept security
contexts.
GSS_C_INITIATE -
Credential will only be used
to initiate security contexts.
GSS_C_ACCEPT -
Credential will only be used
to accept security contexts.

GNU Generic Security Service (GSS) API Reference Manual 41 / 71

initiator_time_req

(Integer, read, optional)
number of seconds that the
credential should remain
valid for initiating security
contexts. This argument is
ignored if the composed
credentials are of type
GSS_C_ACCEPT. Specify
GSS_C_INDEFINITE to
request that the credentials
have the maximum
permitted initiator lifetime.

acceptor_time_req

(Integer, read, optional)
number of seconds that the
credential should remain
valid for accepting security
contexts. This argument is
ignored if the composed
credentials are of type
GSS_C_INITIATE. Specify
GSS_C_INDEFINITE to
request that the credentials
have the maximum
permitted initiator lifetime.

output_cred_handle

(gss_cred_id_t, modify,
optional) The returned
credential handle,
containing the new
credential-element and all
the credential-elements
from input_cred_handle. If
a valid pointer to a
gss_cred_id_t is supplied
for this parameter,
gss_add_cred creates a new
credential handle
containing all
credential-elements from
the input_cred_handle and
the newly acquired
credential-element; if
NULL is specified for this
parameter, the newly
acquired credential-element
will be added to the
credential identified by
input_cred_handle. The
resources associated with
any credential handle
returned via this parameter
must be released by the
application after use with a
call to gss_release_cred().

GNU Generic Security Service (GSS) API Reference Manual 42 / 71

actual_mechs

(Set of Object IDs, modify,
optional) The complete set
of mechanisms for which
the new credential is valid.
Storage for the returned
OID-set must be freed by
the application after use
with a call to
gss_release_oid_set().
Specify NULL if not
required.

initiator_time_rec

(Integer, modify, optional)
Actual number of seconds
for which the returned
credentials will remain
valid for initiating contexts
using the specified
mechanism. If the
implementation or
mechanism does not
support expiration of
credentials, the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required

acceptor_time_rec

(Integer, modify, optional)
Actual number of seconds
for which the returned
credentials will remain
valid for accepting security
contexts using the specified
mechanism. If the
implementation or
mechanism does not
support expiration of
credentials, the value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE: Type contained within desired_name parameter is not supported.

GSS_S_BAD_NAME: Value supplied for desired_name parameter is ill-formed.

GSS_S_DUPLICATE_ELEMENT: The credential already contains an element for the requested mechanism with overlapping
usage and validity period.

GSS_S_CREDENTIALS_EXPIRED: The required credentials could not be added because they have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.

gss_inquire_cred_by_mech ()

GNU Generic Security Service (GSS) API Reference Manual 43 / 71

OM_uint32
gss_inquire_cred_by_mech (OM_uint32 *minor_status,

const gss_cred_id_t cred_handle,
const gss_OID mech_type,
gss_name_t *name,
OM_uint32 *initiator_lifetime,
OM_uint32 *acceptor_lifetime,
gss_cred_usage_t *cred_usage);

Obtains per-mechanism information about a credential.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

cred_handle

(gss_cred_id_t, read) A
handle that refers to the
target credential. Specify
GSS_C_NO_CREDENTIAL
to inquire about the default
initiator principal.

mech_type

(gss_OID, read) The
mechanism for which
information should be
returned.

name

(gss_name_t, modify,
optional) The name whose
identity the credential
asserts. Storage associated
with this name must be
freed by the application
after use with a call to
gss_release_name().
Specify NULL if not
required.

initiator_lifetime

(Integer, modify, optional)
The number of seconds for
which the credential will
remain capable of initiating
security contexts under the
specified mechanism. If the
credential can no longer be
used to initiate contexts, or
if the credential usage for
this mechanism is
GSS_C_ACCEPT, this
parameter will be set to
zero. If the implementation
does not support expiration
of initiator credentials, the
value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

GNU Generic Security Service (GSS) API Reference Manual 44 / 71

acceptor_lifetime

(Integer, modify, optional)
The number of seconds for
which the credential will
remain capable of accepting
security contexts under the
specified mechanism. If the
credential can no longer be
used to accept contexts, or
if the credential usage for
this mechanism is
GSS_C_INITIATE, this
parameter will be set to
zero. If the implementation
does not support expiration
of acceptor credentials, the
value
GSS_C_INDEFINITE will
be returned. Specify NULL
if not required.

cred_usage

(gss_cred_usage_t, modify,
optional) How the
credential may be used with
the specified mechanism.
One of the following:
GSS_C_INITIATE,
GSS_C_ACCEPT,
GSS_C_BOTH. Specify
NULL if not required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CRED: The referenced credentials could not be accessed.

GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the lifetime parameter was not passed as
NULL, it will be set to 0.

gss_export_sec_context ()

OM_uint32
gss_export_sec_context (OM_uint32 *minor_status,

gss_ctx_id_t *context_handle,
gss_buffer_t interprocess_token);

Provided to support the sharing of work between multiple processes. This routine will typically be used by the context-acceptor,
in an application where a single process receives incoming connection requests and accepts security contexts over them, then
passes the established context to one or more other processes for message exchange. gss_export_sec_context() deactivates the
security context for the calling process and creates an interprocess token which, when passed to gss_import_sec_context in
another process, will re-activate the context in the second process. Only a single instantiation of a given context may be active at
any one time; a subsequent attempt by a context exporter to access the exported security context will fail.

The implementation may constrain the set of processes by which the interprocess token may be imported, either as a function of
local security policy, or as a result of implementation decisions. For example, some implementations may constrain contexts to
be passed only between processes that run under the same account, or which are part of the same process group.

GNU Generic Security Service (GSS) API Reference Manual 45 / 71

The interprocess token may contain security-sensitive information (for example cryptographic keys). While mechanisms are
encouraged to either avoid placing such sensitive information within interprocess tokens, or to encrypt the token before returning
it to the application, in a typical object-library GSS-API implementation this may not be possible. Thus the application must take
care to protect the interprocess token, and ensure that any process to which the token is transferred is trustworthy.

If creation of the interprocess token is successful, the implementation shall deallocate all process-wide resources associated with
the security context, and set the context_handle to GSS_C_NO_CONTEXT. In the event of an error that makes it impossible
to complete the export of the security context, the implementation must not return an interprocess token, and should strive to
leave the security context referenced by the context_handle parameter untouched. If this is impossible, it is permissible for the
implementation to delete the security context, providing it also sets the context_handle parameter to GSS_C_NO_CONTEXT.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

context_handle
(gss_ctx_id_t, modify)
Context handle identifying
the context to transfer.

interprocess_token

(buffer, opaque, modify)
Token to be transferred to
target process. Storage
associated with this token
must be freed by the
application after use with a
call to gss_release_buffer().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has expired.

GSS_S_NO_CONTEXT: The context was invalid.

GSS_S_UNAVAILABLE: The operation is not supported.

gss_import_sec_context ()

OM_uint32
gss_import_sec_context (OM_uint32 *minor_status,

const gss_buffer_t interprocess_token,
gss_ctx_id_t *context_handle);

Allows a process to import a security context established by another process. A given interprocess token may be imported only
once. See gss_export_sec_context.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

interprocess_token
(buffer, opaque, modify)
Token received from
exporting process

GNU Generic Security Service (GSS) API Reference Manual 46 / 71

context_handle

(gss_ctx_id_t, modify)
Context handle of newly
reactivated context.
Resources associated with
this context handle must be
released by the application
after use with a call to
gss_delete_sec_context().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: The token did not contain a valid context reference.

GSS_S_DEFECTIVE_TOKEN: The token was invalid.

GSS_S_UNAVAILABLE: The operation is unavailable.

GSS_S_UNAUTHORIZED: Local policy prevents the import of this context by the current process.

gss_create_empty_oid_set ()

OM_uint32
gss_create_empty_oid_set (OM_uint32 *minor_status,

gss_OID_set *oid_set);

Create an object-identifier set containing no object identifiers, to which members may be subsequently added using the gss_add_oid_set_member()
routine. These routines are intended to be used to construct sets of mechanism object identifiers, for input to gss_acquire_cred.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

oid_set

(Set of Object IDs, modify)
The empty object identifier
set. The routine will
allocate the
gss_OID_set_desc object,
which the application must
free after use with a call to
gss_release_oid_set().

Returns

GSS_S_COMPLETE: Successful completion.

gss_add_oid_set_member ()

OM_uint32
gss_add_oid_set_member (OM_uint32 *minor_status,

const gss_OID member_oid,
gss_OID_set *oid_set);

Add an Object Identifier to an Object Identifier set. This routine is intended for use in conjunction with gss_create_empty_oid_set
when constructing a set of mechanism OIDs for input to gss_acquire_cred. The oid_set parameter must refer to an OID-set that

GNU Generic Security Service (GSS) API Reference Manual 47 / 71

was created by GSS-API (e.g. a set returned by gss_create_empty_oid_set()). GSS-API creates a copy of the member_oid and
inserts this copy into the set, expanding the storage allocated to the OID-set’s elements array if necessary. The routine may add
the new member OID anywhere within the elements array, and implementations should verify that the new member_oid is not
already contained within the elements array; if the member_oid is already present, the oid_set should remain unchanged.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

member_oid
(Object ID, read) The
object identifier to copied
into the set.

oid_set

(Set of Object ID, modify)
The set in which the object
identifier should be
inserted.

Returns

GSS_S_COMPLETE: Successful completion.

gss_test_oid_set_member ()

OM_uint32
gss_test_oid_set_member (OM_uint32 *minor_status,

const gss_OID member,
const gss_OID_set set,
int *present);

Interrogate an Object Identifier set to determine whether a specified Object Identifier is a member. This routine is intended to
be used with OID sets returned by gss_indicate_mechs(), gss_acquire_cred(), and gss_inquire_cred(), but will also work with
user-generated sets.

Parameters

minor_status
(integer, modify)
Mechanism specific status
code.

member
(Object ID, read) The
object identifier whose
presence is to be tested.

set (Set of Object ID, read) The
Object Identifier set.

present

(Boolean, modify)
Non-zero if the specified
OID is a member of the set,
zero if not.

Returns

GSS_S_COMPLETE: Successful completion.

GNU Generic Security Service (GSS) API Reference Manual 48 / 71

gss_inquire_names_for_mech ()

OM_uint32
gss_inquire_names_for_mech (OM_uint32 *minor_status,

const gss_OID mechanism,
gss_OID_set *name_types);

Returns the set of nametypes supported by the specified mechanism.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

mechanism
(gss_OID, read) The
mechanism to be
interrogated.

name_types

(gss_OID_set, modify) Set
of name-types supported by
the specified mechanism.
The returned OID set must
be freed by the application
after use with a call to
gss_release_oid_set().

Returns

GSS_S_COMPLETE: Successful completion.

gss_inquire_mechs_for_name ()

OM_uint32
gss_inquire_mechs_for_name (OM_uint32 *minor_status,

const gss_name_t input_name,
gss_OID_set *mech_types);

Returns the set of mechanisms supported by the GSS-API implementation that may be able to process the specified name.

Each mechanism returned will recognize at least one element within the name. It is permissible for this routine to be implemented
within a mechanism-independent GSS-API layer, using the type information contained within the presented name, and based on
registration information provided by individual mechanism implementations. This means that the returned mech_types set may
indicate that a particular mechanism will understand the name when in fact it would refuse to accept the name as input to
gss_canonicalize_name, gss_init_sec_context, gss_acquire_cred or gss_add_cred (due to some property of the specific name, as
opposed to the name type). Thus this routine should be used only as a prefilter for a call to a subsequent mechanism-specific
routine.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

input_name
(gss_name_t, read) The
name to which the inquiry
relates.

GNU Generic Security Service (GSS) API Reference Manual 49 / 71

mech_types

(gss_OID_set, modify) Set
of mechanisms that may
support the specified name.
The returned OID set must
be freed by the caller after
use with a call to
gss_release_oid_set().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAME: The input_name parameter was ill-formed.

GSS_S_BAD_NAMETYPE: The input_name parameter contained an invalid or unsupported type of name.

gss_canonicalize_name ()

OM_uint32
gss_canonicalize_name (OM_uint32 *minor_status,

const gss_name_t input_name,
const gss_OID mech_type,
gss_name_t *output_name);

Generate a canonical mechanism name (MN) from an arbitrary internal name. The mechanism name is the name that would
be returned to a context acceptor on successful authentication of a context where the initiator used the input_name in a suc-
cessful call to gss_acquire_cred, specifying an OID set containing mech_type as its only member, followed by a call to
gss_init_sec_context(), specifying mech_type as the authentication mechanism.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

input_name
(gss_name_t, read) The
name for which a canonical
form is desired.

mech_type

(Object ID, read) The
authentication mechanism
for which the canonical
form of the name is desired.
The desired mechanism
must be specified explicitly;
no default is provided.

output_name

(gss_name_t, modify) The
resultant canonical name.
Storage associated with this
name must be freed by the
application after use with a
call to gss_release_name().

Returns

GSS_S_COMPLETE: Successful completion.

GNU Generic Security Service (GSS) API Reference Manual 50 / 71

gss_duplicate_name ()

OM_uint32
gss_duplicate_name (OM_uint32 *minor_status,

const gss_name_t src_name,
gss_name_t *dest_name);

Create an exact duplicate of the existing internal name src_name . The new dest_name will be independent of src_name (i.e.
src_name and dest_name must both be released, and the release of one shall not affect the validity of the other).

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

src_name (gss_name_t, read) Internal
name to be duplicated.

dest_name

(gss_name_t, modify) The
resultant copy of src_name
. Storage associated with
this name must be freed by
the application after use
with a call to
gss_release_name().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_NAME: The src_name parameter was ill-formed.

gss_sign ()

OM_uint32
gss_sign (OM_uint32 *minor_status,

gss_ctx_id_t context_handle,
int qop_req,
gss_buffer_t message_buffer,
gss_buffer_t message_token);

gss_verify ()

OM_uint32
gss_verify (OM_uint32 *minor_status,

gss_ctx_id_t context_handle,
gss_buffer_t message_buffer,
gss_buffer_t token_buffer,
int *qop_state);

gss_seal ()

GNU Generic Security Service (GSS) API Reference Manual 51 / 71

OM_uint32
gss_seal (OM_uint32 *minor_status,

gss_ctx_id_t context_handle,
int conf_req_flag,
int qop_req,
gss_buffer_t input_message_buffer,
int *conf_state,
gss_buffer_t output_message_buffer);

gss_unseal ()

OM_uint32
gss_unseal (OM_uint32 *minor_status,

gss_ctx_id_t context_handle,
gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int *conf_state,
int *qop_state);

gss_inquire_saslname_for_mech ()

OM_uint32
gss_inquire_saslname_for_mech (OM_uint32 *minor_status,

const gss_OID desired_mech,
gss_buffer_t sasl_mech_name,
gss_buffer_t mech_name,
gss_buffer_t mech_description);

Output the SASL mechanism name of a GSS-API mechanism. It also returns a name and description of the mechanism in a user
friendly form.

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

desired_mech
(OID, read) Identifies the
GSS-API mechanism to
query.

sasl_mech_name

(buffer, character-string,
modify, optional) Buffer to
receive SASL mechanism
name. The application must
free storage associated with
this name after use with a
call to gss_release_buffer().

mech_name

(buffer, character-string,
modify, optional) Buffer to
receive human readable
mechanism name. The
application must free
storage associated with this
name after use with a call to
gss_release_buffer().

GNU Generic Security Service (GSS) API Reference Manual 52 / 71

mech_description

(buffer, character-string,
modify, optional) Buffer to
receive description of
mechanism. The
application must free
storage associated with this
name after use with a call to
gss_release_buffer().

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: The desired_mech OID is unsupported.

gss_inquire_mech_for_saslname ()

OM_uint32
gss_inquire_mech_for_saslname (OM_uint32 *minor_status,

const gss_buffer_t sasl_mech_name,
gss_OID *mech_type);

Output GSS-API mechanism OID of mechanism associated with given sasl_mech_name .

Parameters

minor_status
(Integer, modify)
Mechanism specific status
code.

sasl_mech_name
(buffer, character-string,
read) Buffer with SASL
mechanism name.

mech_type

(OID, modify, optional)
Actual mechanism used.
The OID returned via this
parameter will be a pointer
to static storage that should
be treated as read-only; In
particular the application
should not attempt to free it.
Specify NULL if not
required.

Returns

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: There is no GSS-API mechanism known as sasl_mech_name .

gss_oid_equal ()

int
gss_oid_equal (gss_const_OID first_oid,

gss_const_OID second_oid);

GNU Generic Security Service (GSS) API Reference Manual 53 / 71

Compare two OIDs for equality. The comparison is "deep", i.e., the actual byte sequences of the OIDs are compared instead of
just the pointer equality. This function is standardized in RFC 6339.

Parameters

first_oid (Object ID, read) First
Object identifier.

second_oid (Object ID, read) First
Object identifier.

Returns

Returns boolean value true when the two OIDs are equal, otherwise false.

gss_encapsulate_token ()

OM_uint32
gss_encapsulate_token (gss_const_buffer_t input_token,

gss_const_OID token_oid,
gss_buffer_t output_token);

Add the mechanism-independent token header to GSS-API context token data. This is used for the initial token of a GSS-API
context establishment sequence. It incorporates an identifier of the mechanism type to be used on that context, and enables tokens
to be interpreted unambiguously at GSS-API peers. See further section 3.1 of RFC 2743. This function is standardized in RFC
6339.

Parameters

input_token
(buffer, opaque, read)
Buffer with GSS-API
context token data.

token_oid (Object ID, read) Object
identifier of token.

output_token

(buffer, opaque, modify)
Encapsulated token data;
caller must release with
gss_release_buffer().

Returns

GSS_S_COMPLETE: Indicates successful completion, and that output parameters holds correct information.

GSS_S_FAILURE: Indicates that encapsulation failed for reasons unspecified at the GSS-API level.

gss_decapsulate_token ()

OM_uint32
gss_decapsulate_token (gss_const_buffer_t input_token,

gss_const_OID token_oid,
gss_buffer_t output_token);

Remove the mechanism-independent token header from an initial GSS-API context token. Unwrap a buffer in the mechanism-
independent token format. This is the reverse of gss_encapsulate_token(). The translation is loss-less, all data is preserved as is.
This function is standardized in RFC 6339.

GNU Generic Security Service (GSS) API Reference Manual 54 / 71

Parameters

input_token
(buffer, opaque, read)
Buffer with GSS-API
context token.

token_oid (Object ID, read) Expected
object identifier of token.

output_token

(buffer, opaque, modify)
Decapsulated token data;
caller must release with
gss_release_buffer().

Returns

GSS_S_COMPLETE: Indicates successful completion, and that output parameters holds correct information.

GSS_S_DEFECTIVE_TOKEN: Means that the token failed consistency checks (e.g., OID mismatch or ASN.1 DER length
errors).

GSS_S_FAILURE: Indicates that decapsulation failed for reasons unspecified at the GSS-API level.

Types and Values

gss_ctx_id_t

typedef struct gss_ctx_id_struct *gss_ctx_id_t;

gss_cred_id_t

typedef struct gss_cred_id_struct *gss_cred_id_t;

gss_name_t

typedef struct gss_name_struct *gss_name_t;

gss_uint32

typedef unsigned short gss_uint32;

OM_uint32

typedef gss_uint32 OM_uint32;

gss_qop_t

typedef OM_uint32 gss_qop_t;

GNU Generic Security Service (GSS) API Reference Manual 55 / 71

gss_cred_usage_t

typedef int gss_cred_usage_t;

GSS_C_DELEG_FLAG

define GSS_C_DELEG_FLAG 1

GSS_C_MUTUAL_FLAG

define GSS_C_MUTUAL_FLAG 2

GSS_C_REPLAY_FLAG

define GSS_C_REPLAY_FLAG 4

GSS_C_SEQUENCE_FLAG

define GSS_C_SEQUENCE_FLAG 8

GSS_C_CONF_FLAG

define GSS_C_CONF_FLAG 16

GSS_C_INTEG_FLAG

define GSS_C_INTEG_FLAG 32

GSS_C_ANON_FLAG

define GSS_C_ANON_FLAG 64

GSS_C_PROT_READY_FLAG

define GSS_C_PROT_READY_FLAG 128

GSS_C_TRANS_FLAG

define GSS_C_TRANS_FLAG 256

GSS_C_BOTH

define GSS_C_BOTH 0

GNU Generic Security Service (GSS) API Reference Manual 56 / 71

GSS_C_INITIATE

define GSS_C_INITIATE 1

GSS_C_ACCEPT

define GSS_C_ACCEPT 2

GSS_C_GSS_CODE

define GSS_C_GSS_CODE 1

GSS_C_MECH_CODE

define GSS_C_MECH_CODE 2

GSS_C_AF_UNSPEC

define GSS_C_AF_UNSPEC 0

GSS_C_AF_LOCAL

define GSS_C_AF_LOCAL 1

GSS_C_AF_INET

define GSS_C_AF_INET 2

GSS_C_AF_IMPLINK

define GSS_C_AF_IMPLINK 3

GSS_C_AF_PUP

define GSS_C_AF_PUP 4

GSS_C_AF_CHAOS

define GSS_C_AF_CHAOS 5

GSS_C_AF_NS

define GSS_C_AF_NS 6

GNU Generic Security Service (GSS) API Reference Manual 57 / 71

GSS_C_AF_NBS

define GSS_C_AF_NBS 7

GSS_C_AF_ECMA

define GSS_C_AF_ECMA 8

GSS_C_AF_DATAKIT

define GSS_C_AF_DATAKIT 9

GSS_C_AF_CCITT

define GSS_C_AF_CCITT 10

GSS_C_AF_SNA

define GSS_C_AF_SNA 11

GSS_C_AF_DECnet

define GSS_C_AF_DECnet 12

GSS_C_AF_DLI

define GSS_C_AF_DLI 13

GSS_C_AF_LAT

define GSS_C_AF_LAT 14

GSS_C_AF_HYLINK

define GSS_C_AF_HYLINK 15

GSS_C_AF_APPLETALK

define GSS_C_AF_APPLETALK 16

GSS_C_AF_BSC

define GSS_C_AF_BSC 17

GNU Generic Security Service (GSS) API Reference Manual 58 / 71

GSS_C_AF_DSS

define GSS_C_AF_DSS 18

GSS_C_AF_OSI

define GSS_C_AF_OSI 19

GSS_C_AF_X25

define GSS_C_AF_X25 21

GSS_C_AF_NULLADDR

define GSS_C_AF_NULLADDR 255

GSS_C_NO_NAME

define GSS_C_NO_NAME ((gss_name_t) 0)

GSS_C_NO_BUFFER

define GSS_C_NO_BUFFER ((gss_buffer_t) 0)

GSS_C_NO_OID

define GSS_C_NO_OID ((gss_OID) 0)

GSS_C_NO_OID_SET

define GSS_C_NO_OID_SET ((gss_OID_set) 0)

GSS_C_NO_CONTEXT

define GSS_C_NO_CONTEXT ((gss_ctx_id_t) 0)

GSS_C_NO_CREDENTIAL

define GSS_C_NO_CREDENTIAL ((gss_cred_id_t) 0)

GSS_C_NO_CHANNEL_BINDINGS

define GSS_C_NO_CHANNEL_BINDINGS ((gss_channel_bindings_t) 0)

GNU Generic Security Service (GSS) API Reference Manual 59 / 71

GSS_C_EMPTY_BUFFER

define GSS_C_EMPTY_BUFFER {0, NULL}

GSS_C_NULL_OID

define GSS_C_NULL_OID GSS_C_NO_OID

GSS_C_NULL_OID_SET

define GSS_C_NULL_OID_SET GSS_C_NO_OID_SET

GSS_C_QOP_DEFAULT

define GSS_C_QOP_DEFAULT 0

GSS_C_INDEFINITE

define GSS_C_INDEFINITE 0xfffffffful

GSS_C_NT_USER_NAME

extern gss_OID GSS_C_NT_USER_NAME;

GSS_C_NT_MACHINE_UID_NAME

extern gss_OID GSS_C_NT_MACHINE_UID_NAME;

GSS_C_NT_STRING_UID_NAME

extern gss_OID GSS_C_NT_STRING_UID_NAME;

GSS_C_NT_HOSTBASED_SERVICE_X

extern gss_OID GSS_C_NT_HOSTBASED_SERVICE_X;

GSS_C_NT_HOSTBASED_SERVICE

extern gss_OID GSS_C_NT_HOSTBASED_SERVICE;

GSS_C_NT_ANONYMOUS

extern gss_OID GSS_C_NT_ANONYMOUS;

GNU Generic Security Service (GSS) API Reference Manual 60 / 71

GSS_C_NT_EXPORT_NAME

extern gss_OID GSS_C_NT_EXPORT_NAME;

GSS_S_COMPLETE

define GSS_S_COMPLETE 0

GSS_C_CALLING_ERROR_OFFSET

define GSS_C_CALLING_ERROR_OFFSET 24

GSS_C_ROUTINE_ERROR_OFFSET

define GSS_C_ROUTINE_ERROR_OFFSET 16

GSS_C_SUPPLEMENTARY_OFFSET

define GSS_C_SUPPLEMENTARY_OFFSET 0

GSS_C_CALLING_ERROR_MASK

define GSS_C_CALLING_ERROR_MASK 0377ul

GSS_C_ROUTINE_ERROR_MASK

define GSS_C_ROUTINE_ERROR_MASK 0377ul

GSS_C_SUPPLEMENTARY_MASK

define GSS_C_SUPPLEMENTARY_MASK 0177777ul

GSS_S_CALL_INACCESSIBLE_READ

define GSS_S_CALL_INACCESSIBLE_READ~(1ul << GSS_C_CALLING_ERROR_OFFSET)

GSS_S_CALL_INACCESSIBLE_WRITE

define GSS_S_CALL_INACCESSIBLE_WRITE~(2ul << GSS_C_CALLING_ERROR_OFFSET)

GSS_S_CALL_BAD_STRUCTURE

define GSS_S_CALL_BAD_STRUCTURE~(3ul << GSS_C_CALLING_ERROR_OFFSET)

GNU Generic Security Service (GSS) API Reference Manual 61 / 71

GSS_S_BAD_MECH

define GSS_S_BAD_MECH (1ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_NAME

define GSS_S_BAD_NAME (2ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_NAMETYPE

define GSS_S_BAD_NAMETYPE (3ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_BINDINGS

define GSS_S_BAD_BINDINGS (4ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_STATUS

define GSS_S_BAD_STATUS (5ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_SIG

define GSS_S_BAD_SIG (6ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_MIC

define GSS_S_BAD_MIC GSS_S_BAD_SIG

GSS_S_NO_CRED

define GSS_S_NO_CRED (7ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_NO_CONTEXT

define GSS_S_NO_CONTEXT (8ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_DEFECTIVE_TOKEN

define GSS_S_DEFECTIVE_TOKEN (9ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_DEFECTIVE_CREDENTIAL

define GSS_S_DEFECTIVE_CREDENTIAL (10ul << GSS_C_ROUTINE_ERROR_OFFSET)

GNU Generic Security Service (GSS) API Reference Manual 62 / 71

GSS_S_CREDENTIALS_EXPIRED

define GSS_S_CREDENTIALS_EXPIRED (11ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_CONTEXT_EXPIRED

define GSS_S_CONTEXT_EXPIRED (12ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_FAILURE

define GSS_S_FAILURE (13ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_BAD_QOP

define GSS_S_BAD_QOP (14ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_UNAUTHORIZED

define GSS_S_UNAUTHORIZED (15ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_UNAVAILABLE

define GSS_S_UNAVAILABLE (16ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_DUPLICATE_ELEMENT

define GSS_S_DUPLICATE_ELEMENT (17ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_NAME_NOT_MN

define GSS_S_NAME_NOT_MN (18ul << GSS_C_ROUTINE_ERROR_OFFSET)

GSS_S_CONTINUE_NEEDED

define GSS_S_CONTINUE_NEEDED~(1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 0))

GSS_S_DUPLICATE_TOKEN

define GSS_S_DUPLICATE_TOKEN~(1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 1))

GSS_S_OLD_TOKEN

define GSS_S_OLD_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 2))

GNU Generic Security Service (GSS) API Reference Manual 63 / 71

GSS_S_UNSEQ_TOKEN

define GSS_S_UNSEQ_TOKEN~(1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 3))

GSS_S_GAP_TOKEN

define GSS_S_GAP_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 4))

gss_const_buffer_t

typedef const gss_buffer_desc *gss_const_buffer_t;

gss_const_ctx_id_t

typedef const struct gss_ctx_id_struct *gss_const_ctx_id_t;

gss_const_cred_id_t

typedef const struct gss_cred_id_struct *gss_const_cred_id_t;

gss_const_name_t

typedef const struct gss_name_struct *gss_const_name_t;

gss_const_OID

typedef const gss_OID_desc *gss_const_OID;

gss_const_OID_set

typedef const gss_OID_set_desc *gss_const_OID_set;

1.3 ext

ext —

Functions

const char * gss_check_version ()
int gss_userok ()

Types and Values

GNU Generic Security Service (GSS) API Reference Manual 64 / 71

extern gss_OID_desc GSS_C_NT_USER_NAME_static
extern gss_OID_desc GSS_C_NT_MACHINE_UID_NAME_static
extern gss_OID_desc GSS_C_NT_STRING_UID_NAME_static
extern gss_OID_desc GSS_C_NT_HOSTBASED_SERVICE_X_static
extern gss_OID_desc GSS_C_NT_HOSTBASED_SERVICE_static
extern gss_OID_desc GSS_C_NT_ANONYMOUS_static
extern gss_OID_desc GSS_C_NT_EXPORT_NAME_static

Description

Functions

gss_check_version ()

const char~*
gss_check_version (const char *req_version);

Check that the version of the library is at minimum the one given as a string in req_version .

WARNING: This function is a GNU GSS specific extension, and is not part of the official GSS API.

Parameters

req_version version string to compare
with, or NULL

Returns

The actual version string of the library; NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

gss_userok ()

int
gss_userok (const gss_name_t name,

const char *username);

Compare the username against the output from gss_export_name() invoked on name , after removing the leading OID. This
answers the question whether the particular mechanism would authenticate them as the same principal

WARNING: This function is a GNU GSS specific extension, and is not part of the official GSS API.

Parameters

name (gss_name_t, read) Name to
be compared.

username Zero terminated string with
username.

Returns

Returns 0 if the names match, non-0 otherwise.

GNU Generic Security Service (GSS) API Reference Manual 65 / 71

Types and Values

GSS_C_NT_USER_NAME_static

extern gss_OID_desc GSS_C_NT_USER_NAME_static;

GSS_C_NT_MACHINE_UID_NAME_static

extern gss_OID_desc GSS_C_NT_MACHINE_UID_NAME_static;

GSS_C_NT_STRING_UID_NAME_static

extern gss_OID_desc GSS_C_NT_STRING_UID_NAME_static;

GSS_C_NT_HOSTBASED_SERVICE_X_static

extern gss_OID_desc GSS_C_NT_HOSTBASED_SERVICE_X_static;

GSS_C_NT_HOSTBASED_SERVICE_static

extern gss_OID_desc GSS_C_NT_HOSTBASED_SERVICE_static;

GSS_C_NT_ANONYMOUS_static

extern gss_OID_desc GSS_C_NT_ANONYMOUS_static;

GSS_C_NT_EXPORT_NAME_static

extern gss_OID_desc GSS_C_NT_EXPORT_NAME_static;

1.4 krb5

krb5 —

Types and Values

#define GSS_KRB5_S_G_BAD_SERVICE_NAME
#define GSS_KRB5_S_G_BAD_STRING_UID
#define GSS_KRB5_S_G_NOUSER
#define GSS_KRB5_S_G_VALIDATE_FAILED
#define GSS_KRB5_S_G_BUFFER_ALLOC
#define GSS_KRB5_S_G_BAD_MSG_CTX
#define GSS_KRB5_S_G_WRONG_SIZE
#define GSS_KRB5_S_G_BAD_USAGE
#define GSS_KRB5_S_G_UNKNOWN_QOP

GNU Generic Security Service (GSS) API Reference Manual 66 / 71

#define GSS_KRB5_S_KG_CCACHE_NOMATCH
#define GSS_KRB5_S_KG_KEYTAB_NOMATCH
#define GSS_KRB5_S_KG_TGT_MISSING
#define GSS_KRB5_S_KG_NO_SUBKEY
#define GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
#define GSS_KRB5_S_KG_BAD_SIGN_TYPE
#define GSS_KRB5_S_KG_BAD_LENGTH
#define GSS_KRB5_S_KG_CTX_INCOMPLETE
extern gss_OID GSS_KRB5_NT_USER_NAME
extern gss_OID GSS_KRB5_NT_HOSTBASED_SERVICE_NAME
extern gss_OID GSS_KRB5_NT_PRINCIPAL_NAME
extern gss_OID GSS_KRB5_NT_MACHINE_UID_NAME
extern gss_OID GSS_KRB5_NT_STRING_UID_NAME

Description

Functions

Types and Values

GSS_KRB5_S_G_BAD_SERVICE_NAME

define GSS_KRB5_S_G_BAD_SERVICE_NAME 1

GSS_KRB5_S_G_BAD_STRING_UID

define GSS_KRB5_S_G_BAD_STRING_UID 2

GSS_KRB5_S_G_NOUSER

define GSS_KRB5_S_G_NOUSER 3

GSS_KRB5_S_G_VALIDATE_FAILED

define GSS_KRB5_S_G_VALIDATE_FAILED 4

GSS_KRB5_S_G_BUFFER_ALLOC

define GSS_KRB5_S_G_BUFFER_ALLOC 5

GSS_KRB5_S_G_BAD_MSG_CTX

define GSS_KRB5_S_G_BAD_MSG_CTX 6

GSS_KRB5_S_G_WRONG_SIZE

define GSS_KRB5_S_G_WRONG_SIZE 7

GNU Generic Security Service (GSS) API Reference Manual 67 / 71

GSS_KRB5_S_G_BAD_USAGE

define GSS_KRB5_S_G_BAD_USAGE 8

GSS_KRB5_S_G_UNKNOWN_QOP

define GSS_KRB5_S_G_UNKNOWN_QOP 9

GSS_KRB5_S_KG_CCACHE_NOMATCH

define GSS_KRB5_S_KG_CCACHE_NOMATCH 10

GSS_KRB5_S_KG_KEYTAB_NOMATCH

define GSS_KRB5_S_KG_KEYTAB_NOMATCH 11

GSS_KRB5_S_KG_TGT_MISSING

define GSS_KRB5_S_KG_TGT_MISSING 12

GSS_KRB5_S_KG_NO_SUBKEY

define GSS_KRB5_S_KG_NO_SUBKEY 13

GSS_KRB5_S_KG_CONTEXT_ESTABLISHED

define GSS_KRB5_S_KG_CONTEXT_ESTABLISHED 14

GSS_KRB5_S_KG_BAD_SIGN_TYPE

define GSS_KRB5_S_KG_BAD_SIGN_TYPE 15

GSS_KRB5_S_KG_BAD_LENGTH

define GSS_KRB5_S_KG_BAD_LENGTH 16

GSS_KRB5_S_KG_CTX_INCOMPLETE

define GSS_KRB5_S_KG_CTX_INCOMPLETE 17

GSS_KRB5_NT_USER_NAME

extern gss_OID GSS_KRB5_NT_USER_NAME;

GNU Generic Security Service (GSS) API Reference Manual 68 / 71

GSS_KRB5_NT_HOSTBASED_SERVICE_NAME

extern gss_OID GSS_KRB5_NT_HOSTBASED_SERVICE_NAME;

GSS_KRB5_NT_PRINCIPAL_NAME

extern gss_OID GSS_KRB5_NT_PRINCIPAL_NAME;

GSS_KRB5_NT_MACHINE_UID_NAME

extern gss_OID GSS_KRB5_NT_MACHINE_UID_NAME;

GSS_KRB5_NT_STRING_UID_NAME

extern gss_OID GSS_KRB5_NT_STRING_UID_NAME;

1.5 krb5-ext

krb5-ext —

Types and Values

extern gss_OID GSS_KRB5
extern gss_OID_desc GSS_KRB5_static
extern gss_OID_desc GSS_KRB5_NT_USER_NAME_static
extern gss_OID_desc GSS_KRB5_NT_HOSTBASED_SERVICE_NAME_static
extern gss_OID_desc GSS_KRB5_NT_PRINCIPAL_NAME_static
extern gss_OID_desc GSS_KRB5_NT_MACHINE_UID_NAME_static
extern gss_OID_desc GSS_KRB5_NT_STRING_UID_NAME_static

Description

Functions

Types and Values

GSS_KRB5

extern gss_OID GSS_KRB5;

GSS_KRB5_static

extern gss_OID_desc GSS_KRB5_static;

GNU Generic Security Service (GSS) API Reference Manual 69 / 71

GSS_KRB5_NT_USER_NAME_static

extern gss_OID_desc GSS_KRB5_NT_USER_NAME_static;

GSS_KRB5_NT_HOSTBASED_SERVICE_NAME_static

extern gss_OID_desc GSS_KRB5_NT_HOSTBASED_SERVICE_NAME_static;

GSS_KRB5_NT_PRINCIPAL_NAME_static

extern gss_OID_desc GSS_KRB5_NT_PRINCIPAL_NAME_static;

GSS_KRB5_NT_MACHINE_UID_NAME_static

extern gss_OID_desc GSS_KRB5_NT_MACHINE_UID_NAME_static;

GSS_KRB5_NT_STRING_UID_NAME_static

extern gss_OID_desc GSS_KRB5_NT_STRING_UID_NAME_static;

GNU Generic Security Service (GSS) API Reference Manual 70 / 71

Chapter 2

Index

G
gss_accept_sec_context, 14
gss_acquire_cred, 5
gss_add_cred, 39
gss_add_oid_set_member, 46
GSS_C_ACCEPT, 56
GSS_C_AF_APPLETALK, 57
GSS_C_AF_BSC, 57
GSS_C_AF_CCITT, 57
GSS_C_AF_CHAOS, 56
GSS_C_AF_DATAKIT, 57
GSS_C_AF_DECnet, 57
GSS_C_AF_DLI, 57
GSS_C_AF_DSS, 58
GSS_C_AF_ECMA, 57
GSS_C_AF_HYLINK, 57
GSS_C_AF_IMPLINK, 56
GSS_C_AF_INET, 56
GSS_C_AF_LAT, 57
GSS_C_AF_LOCAL, 56
GSS_C_AF_NBS, 57
GSS_C_AF_NS, 56
GSS_C_AF_NULLADDR, 58
GSS_C_AF_OSI, 58
GSS_C_AF_PUP, 56
GSS_C_AF_SNA, 57
GSS_C_AF_UNSPEC, 56
GSS_C_AF_X25, 58
GSS_C_ANON_FLAG, 55
GSS_C_BOTH, 55
GSS_C_CALLING_ERROR_MASK, 60
GSS_C_CALLING_ERROR_OFFSET, 60
GSS_C_CONF_FLAG, 55
GSS_C_DELEG_FLAG, 55
GSS_C_EMPTY_BUFFER, 59
GSS_C_GSS_CODE, 56
GSS_C_INDEFINITE, 59
GSS_C_INITIATE, 56
GSS_C_INTEG_FLAG, 55
GSS_C_MECH_CODE, 56
GSS_C_MUTUAL_FLAG, 55
GSS_C_NO_BUFFER, 58
GSS_C_NO_CHANNEL_BINDINGS, 58

GSS_C_NO_CONTEXT, 58
GSS_C_NO_CREDENTIAL, 58
GSS_C_NO_NAME, 58
GSS_C_NO_OID, 58
GSS_C_NO_OID_SET, 58
GSS_C_NT_ANONYMOUS, 59
GSS_C_NT_ANONYMOUS_static, 65
GSS_C_NT_EXPORT_NAME, 60
GSS_C_NT_EXPORT_NAME_static, 65
GSS_C_NT_HOSTBASED_SERVICE, 59
GSS_C_NT_HOSTBASED_SERVICE_static, 65
GSS_C_NT_HOSTBASED_SERVICE_X, 59
GSS_C_NT_HOSTBASED_SERVICE_X_static, 65
GSS_C_NT_MACHINE_UID_NAME, 59
GSS_C_NT_MACHINE_UID_NAME_static, 65
GSS_C_NT_STRING_UID_NAME, 59
GSS_C_NT_STRING_UID_NAME_static, 65
GSS_C_NT_USER_NAME, 59
GSS_C_NT_USER_NAME_static, 65
GSS_C_NULL_OID, 59
GSS_C_NULL_OID_SET, 59
GSS_C_PROT_READY_FLAG, 55
GSS_C_QOP_DEFAULT, 59
GSS_C_REPLAY_FLAG, 55
GSS_C_ROUTINE_ERROR_MASK, 60
GSS_C_ROUTINE_ERROR_OFFSET, 60
GSS_C_SEQUENCE_FLAG, 55
GSS_C_SUPPLEMENTARY_MASK, 60
GSS_C_SUPPLEMENTARY_OFFSET, 60
GSS_C_TRANS_FLAG, 55
GSS_CALLING_ERROR, 5
gss_canonicalize_name, 49
gss_check_version, 64
gss_compare_name, 28
gss_const_buffer_t, 63
gss_const_cred_id_t, 63
gss_const_ctx_id_t, 63
gss_const_name_t, 63
gss_const_OID, 63
gss_const_OID_set, 63
gss_context_time, 21
gss_create_empty_oid_set, 46
gss_cred_id_t, 54

GNU Generic Security Service (GSS) API Reference Manual 71 / 71

gss_cred_usage_t, 55
gss_ctx_id_t, 54
gss_decapsulate_token, 53
gss_delete_sec_context, 20
gss_display_name, 29
gss_display_status, 26
gss_duplicate_name, 50
gss_encapsulate_token, 53
GSS_ERROR, 5
gss_export_name, 31
gss_export_sec_context, 44
gss_get_mic, 22
gss_import_name, 30
gss_import_sec_context, 45
gss_indicate_mechs, 28
gss_init_sec_context, 8
gss_inquire_context, 34
gss_inquire_cred, 33
gss_inquire_cred_by_mech, 42
gss_inquire_mech_for_saslname, 52
gss_inquire_mechs_for_name, 48
gss_inquire_names_for_mech, 48
gss_inquire_saslname_for_mech, 51
GSS_KRB5, 68
GSS_KRB5_NT_HOSTBASED_SERVICE_NAME, 68
GSS_KRB5_NT_HOSTBASED_SERVICE_NAME_static,

69
GSS_KRB5_NT_MACHINE_UID_NAME, 68
GSS_KRB5_NT_MACHINE_UID_NAME_static, 69
GSS_KRB5_NT_PRINCIPAL_NAME, 68
GSS_KRB5_NT_PRINCIPAL_NAME_static, 69
GSS_KRB5_NT_STRING_UID_NAME, 68
GSS_KRB5_NT_STRING_UID_NAME_static, 69
GSS_KRB5_NT_USER_NAME, 67
GSS_KRB5_NT_USER_NAME_static, 69
GSS_KRB5_S_G_BAD_MSG_CTX, 66
GSS_KRB5_S_G_BAD_SERVICE_NAME, 66
GSS_KRB5_S_G_BAD_STRING_UID, 66
GSS_KRB5_S_G_BAD_USAGE, 67
GSS_KRB5_S_G_BUFFER_ALLOC, 66
GSS_KRB5_S_G_NOUSER, 66
GSS_KRB5_S_G_UNKNOWN_QOP, 67
GSS_KRB5_S_G_VALIDATE_FAILED, 66
GSS_KRB5_S_G_WRONG_SIZE, 66
GSS_KRB5_S_KG_BAD_LENGTH, 67
GSS_KRB5_S_KG_BAD_SIGN_TYPE, 67
GSS_KRB5_S_KG_CCACHE_NOMATCH, 67
GSS_KRB5_S_KG_CONTEXT_ESTABLISHED, 67
GSS_KRB5_S_KG_CTX_INCOMPLETE, 67
GSS_KRB5_S_KG_KEYTAB_NOMATCH, 67
GSS_KRB5_S_KG_NO_SUBKEY, 67
GSS_KRB5_S_KG_TGT_MISSING, 67
GSS_KRB5_static, 68
gss_name_t, 54
gss_oid_equal, 52
gss_process_context_token, 19
gss_qop_t, 54

gss_release_buffer, 32
gss_release_cred, 7
gss_release_name, 32
gss_release_oid_set, 33
GSS_ROUTINE_ERROR, 5
GSS_S_BAD_BINDINGS, 61
GSS_S_BAD_MECH, 61
GSS_S_BAD_MIC, 61
GSS_S_BAD_NAME, 61
GSS_S_BAD_NAMETYPE, 61
GSS_S_BAD_QOP, 62
GSS_S_BAD_SIG, 61
GSS_S_BAD_STATUS, 61
GSS_S_CALL_BAD_STRUCTURE, 60
GSS_S_CALL_INACCESSIBLE_READ, 60
GSS_S_CALL_INACCESSIBLE_WRITE, 60
GSS_S_COMPLETE, 60
GSS_S_CONTEXT_EXPIRED, 62
GSS_S_CONTINUE_NEEDED, 62
GSS_S_CREDENTIALS_EXPIRED, 62
GSS_S_DEFECTIVE_CREDENTIAL, 61
GSS_S_DEFECTIVE_TOKEN, 61
GSS_S_DUPLICATE_ELEMENT, 62
GSS_S_DUPLICATE_TOKEN, 62
GSS_S_FAILURE, 62
GSS_S_GAP_TOKEN, 63
GSS_S_NAME_NOT_MN, 62
GSS_S_NO_CONTEXT, 61
GSS_S_NO_CRED, 61
GSS_S_OLD_TOKEN, 62
GSS_S_UNAUTHORIZED, 62
GSS_S_UNAVAILABLE, 62
GSS_S_UNSEQ_TOKEN, 63
gss_seal, 50
gss_sign, 50
GSS_SUPPLEMENTARY_INFO, 5
gss_test_oid_set_member, 47
gss_uint32, 54
gss_unseal, 51
gss_unwrap, 25
gss_userok, 64
gss_verify, 50
gss_verify_mic, 23
GSS_VERSION, 1
GSS_VERSION_MAJOR, 2
GSS_VERSION_MINOR, 2
GSS_VERSION_NUMBER, 2
GSS_VERSION_PATCH, 2
gss_wrap, 23
gss_wrap_size_limit, 38

O
OM_uint32, 54

	GNU Generic Security Service (GSS) API Reference Manual
	gss
	api
	ext
	krb5
	krb5-ext

	Index

