
Guile-GNOME: Clutter
version 1.10.0, updated 9 May 2012

Matthew Allum and OpenedHand LTD
Intel Corporation

This manual is for (gnome clutter) (version 1.10.0, updated 9 May 2012)

Copyright 2006,2007,2008 OpenedHand LTD

Copyright 2009,2010,2011,2012 Intel Corporation

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. You may obtain a copy of
the GNU Free Documentation License from the Free Software Foundation by
visiting their Web site or by writing to:

The Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

i

Short Contents

1 Overview . 1

2 ClutterAction . 2

3 ClutterActorMeta . 3

4 ClutterActor . 5

5 ClutterAlignConstraint . 63

6 ClutterAlpha . 65

7 ClutterAnimatable . 68

8 Implicit Animations . 69

9 ClutterAnimator . 76

10 ClutterBackend . 82

11 ClutterBinLayout . 84

12 ClutterBindConstraint . 87

13 Key Bindings . 90
14 ClutterBlurEffect . 94

15 ClutterBoxLayout . 95

16 ClutterBrightnessContrastEffect . 100

17 ClutterCairoTexture . 101

18 ClutterCanvas . 103

19 ClutterChildMeta . 104

20 ClutterClickAction . 105

21 ClutterClone . 108

22 Colors . 109

23 ClutterColorizeEffect . 114

24 ClutterConstraint . 115

25 ClutterContainer . 117

26 ClutterContent . 119

27 ClutterDeformEffect . 120

28 ClutterDesaturateEffect . 122

29 ClutterDeviceManager . 123

30 ClutterDragAction . 125

31 ClutterDropAction . 127

32 ClutterEffect . 128

33 Events . 132

34 Features . 141

35 ClutterFixedLayout . 142

ii

36 ClutterFlowLayout . 143

37 ClutterGestureAction . 146

38 ClutterImage . 147

39 ClutterInputDevice . 148

40 Value intervals . 152
41 ClutterLayoutManager . 155

42 ClutterLayoutMeta . 161

43 ClutterListModel . 162

44 General . 163

45 ClutterMedia . 167

46 ClutterModelIter . 170

47 ClutterModel . 171

48 ClutterOffscreenEffect . 174

49 ClutterPageTurnEffect . 175

50 ClutterPaintNode . 177

51 Paint Nodes . 178

52 ClutterPathConstraint . 179

53 ClutterPath . 181

54 ClutterPropertyTransition . 188

55 ClutterScript . 189

56 ClutterScriptable . 196
57 ClutterSettings . 197

58 ClutterShaderEffect . 198

59 Shaders . 200

60 ClutterSnapConstraint . 201

61 Stage Manager . 203

62 ClutterStage . 204

63 ClutterState . 211

64 ClutterSwipeAction . 220

65 ClutterTableLayout . 221
66 ClutterTextBuffer . 225

67 ClutterText . 228

68 ClutterTexture . 244

69 ClutterTimeline . 249
70 ClutterTransition . 257

71 Unit conversion . 259

72 Utilities . 263

73 Versioning Macros . 264

iii

74 Undocumented . 265

Type Index . 270

Function Index . 271

Chapter 1: Overview 1

1 Overview

(gnome clutter) wraps the Clutter graphical canvas toolkit for Guile. It is a part of
Guile-GNOME.

See the documentation for (gnome gobject) for more information on Guile-GNOME.

Chapter 2: ClutterAction 2

2 ClutterAction

Abstract class for event-related logic

2.1 Overview

<clutter-action> is an abstract base class for event-related actions that modify the user
interaction of a <clutter-actor>, just like <clutter-constraint> is an abstract class for
modifiers of an actor’s position or size.

Implementations of <clutter-action> are associated to an actor and can provide be-
havioral changes when dealing with user input - for instance drag and drop capabilities,
or scrolling, or panning - by using the various event-related signals provided by <clutter-

actor> itself.

<clutter-action> is available since Clutter 1.4

2.2 Usage

Chapter 3: ClutterActorMeta 3

3 ClutterActorMeta

Base class of actor modifiers

3.1 Overview

<clutter-actor-meta> is an abstract class providing a common API for modifiers of
<clutter-actor> behaviour, appearance or layout.

A <clutter-actor-meta> can only be owned by a single <clutter-actor> at any time.

Every sub-class of <clutter-actor-meta> should check if the <"enabled"> property is
set to ‘#t’ before applying any kind of modification.

<clutter-actor-meta> is available since Clutter 1.4

3.2 Usage

[Function]clutter-actor-meta-set-name (self <clutter-actor-meta>)
(name mchars)

[Method]set-name
Sets the name of meta

The name can be used to identify the <clutter-actor-meta> instance

meta a <clutter-actor-meta>

name the name of meta

Since 1.4

[Function]clutter-actor-meta-get-name (self <clutter-actor-meta>)
⇒ (ret mchars)

[Method]get-name
Retrieves the name set using clutter-actor-meta-set-name

meta a <clutter-actor-meta>

ret the name of the <clutter-actor-meta> instance, or ‘#f’ if none was set.
The returned string is owned by the <clutter-actor-meta> instance and
it should not be modified or freed.

Since 1.4

[Function]clutter-actor-meta-set-enabled (self <clutter-actor-meta>)
(is enabled bool)

[Method]set-enabled
Sets whether meta should be enabled or not

meta a <clutter-actor-meta>

is-enabled whether meta is enabled

Since 1.4

Chapter 3: ClutterActorMeta 4

[Function]clutter-actor-meta-get-enabled (self <clutter-actor-meta>)
⇒ (ret bool)

[Method]get-enabled
Retrieves whether meta is enabled

meta a <clutter-actor-meta>

ret ‘#t’ if the <clutter-actor-meta> instance is enabled

Since 1.4

[Function]clutter-actor-meta-get-actor (self <clutter-actor-meta>)
⇒ (ret <clutter-actor>)

[Method]get-actor
Retrieves a pointer to the <clutter-actor> that owns meta

meta a <clutter-actor-meta>

ret a pointer to a <clutter-actor> or ‘#f’.

Since 1.4

Chapter 4: ClutterActor 5

4 ClutterActor

The basic element of the scene graph

4.1 Overview

The ClutterActor class is the basic element of the scene graph in Clutter, and it encapsulates
the position, size, and transformations of a node in the graph.

4.2 Actor transformations

Each actor can be transformed using methods like clutter-actor-set-scale or clutter-
actor-set-rotation. The order in which the transformations are applied is decided by
Clutter and it is the following:

1.

2.

3.

4.

5.

6.

7.

translation by the origin of the <"allocation">;

translation by the actor’s <"depth">;

scaling by the <"scale-x"> and <"scale-y"> factors;

rotation around the <"rotation-z-angle"> and <"rotation-z-center">;

rotation around the <"rotation-y-angle"> and <"rotation-y-center">;

rotation around the <"rotation-x-angle"> and <"rotation-x-center">;

negative translation by the <"anchor-x"> and <"anchor-y"> point.

4.3 Modifying an actor’s geometry

Each actor has a bounding box, called <"allocation"> which is either set by its parent or
explicitly through the clutter-actor-set-position and clutter-actor-set-sizemeth-
ods. Each actor also has an implicit preferred size.

An actors preferred size can be defined by any subclass by overriding the clutter-

actor-class.get-preferred-width and the clutter-actor-class.get-preferred-

height virtual functions, or it can be explicitly set by using clutter-actor-set-width

and clutter-actor-set-height.

An actors position can be set explicitly by using clutter-actor-set-x and clutter-

actor-set-y; the coordinates are relative to the origin of the actors parent.

Chapter 4: ClutterActor 6

4.4 Managing actor children

Each actor can have multiple children, by calling clutter-actor-add-child to add a new
child actor, and clutter-actor-remove-child to remove an existing child. <clutter-

actor> will hold a reference on each child actor, which will be released when the child is
removed from its parent, or destroyed using clutter-actor-destroy.

ClutterActor *actor = clutter_actor_new ();

/* set the bounding box of the actor */

clutter_actor_set_position (actor, 0, 0);

clutter_actor_set_size (actor, 480, 640);

/* set the background color of the actor */

clutter_actor_set_background_color (actor, CLUTTER_COLOR_Orange);

/* set the bounding box of the child, relative to the parent */

ClutterActor *child = clutter_actor_new ();

clutter_actor_set_position (child, 20, 20);

clutter_actor_set_size (child, 80, 240);

/* set the background color of the child */

clutter_actor_set_background_color (child, CLUTTER_COLOR_Blue);

/* add the child to the actor */

clutter_actor_add_child (actor, child);

Children can be inserted at a given index, or above and below another child actor. The
order of insertion determines the order of the children when iterating over them. Iterating
over children is performed by using clutter-actor-get-first-child, clutter-actor-
get-previous-sibling, clutter-actor-get-next-sibling, and clutter-actor-get-

last-child. It is also possible to retrieve a list of children by using clutter-actor-

get-children, as well as retrieving a specific child at a given index by using clutter-

actor-get-child-at-index.

If you need to track additions of children to a <clutter-actor>, use the <"actor-

added"> signal; similarly, to track removals of children from a ClutterActor, use the
<"actor-removed"> signal.

4.5 Painting an actor

There are three ways to paint an actor:

•
•
•

set a delegate <clutter-content> as the value for the <"content"> property of the
actor;

Chapter 4: ClutterActor 7

subclass <clutter-actor> and override the clutter-actor-class.paint-node virtual
function;

subclass <clutter-actor> and override the clutter-actor-class.paint virtual func-
tion.

A <clutter-content> is a delegate object that takes over the painting operation of
one, or more actors. The <clutter-content> painting will be performed on top of the
<"background-color"> of the actor, and before calling the clutter-actor-class.paint-
node virtual function.

ClutterActor *actor = clutter_actor_new ();

/* set the bounding box */

clutter_actor_set_position (actor, 50, 50);

clutter_actor_set_size (actor, 100, 100);

/* set the content; the image_content variable is set elsewhere */

clutter_actor_set_content (actor, image_content);

The clutter-actor-class.paint-node virtual function is invoked whenever an actor
needs to be painted. The implementation of the virtual function must only paint the
contents of the actor itself, and not the contents of its children, if the actor has any.

The <clutter-paint-node> passed to the virtual function is the local root of the render
tree; any node added to it will be rendered at the correct position, as defined by the actor’s
<"allocation">.

static void

my_actor_paint_node (ClutterActor *actor,

ClutterPaintNode *root)

{

ClutterPaintNode *node;

ClutterActorBox box;

/* where the content of the actor should be painted */

clutter_actor_get_allocation_box (actor, &box);

/* the cogl_texture variable is set elsewhere */

node = clutter_texture_node_new (cogl_texture, CLUTTER_COLOR_White,

CLUTTER_SCALING_FILTER_TRILINEAR,

CLUTTER_SCALING_FILTER_LINEAR);

/* paint the content of the node using the allocation */

clutter_paint_node_add_rectangle (node, &box);

/* add the node, and transfer ownership */

clutter_paint_node_add_child (root, node);

Chapter 4: ClutterActor 8

clutter_paint_node_unref (node);

}

The clutter-actor-class.paint virtual function is invoked when the <"paint"> signal
is emitted, and after the other signal handlers have been invoked. Overriding the paint
virtual function gives total control to the paint sequence of the actor itself, including the
children of the actor, if any.

It is strongly discouraged to override the clutter-actor-class.paint virtual function,
as well as connecting to the <"paint"> signal. These hooks into the paint sequence are
considered legacy, and will be removed when the Clutter API changes.

4.6 Handling events on an actor

A <clutter-actor> can receive and handle input device events, for instance pointer events
and key events, as long as its <"reactive"> property is set to ‘#t’.

Once an actor has been determined to be the source of an event, Clutter will traverse the
scene graph from the top-level actor towards the event source, emitting the <"captured-

event"> signal on each ancestor until it reaches the source; this phase is also called the
capture phase. If the event propagation was not stopped, the graph is walked backwards,
from the source actor to the top-level, and the <"event"> signal, along with other event
signals if needed, is emitted; this phase is also called the bubble phase. At any point of the
signal emission, signal handlers can stop the propagation through the scene graph by re-
turning ‘CLUTTER_EVENT_STOP’; otherwise, they can continue the propagation by returning
‘CLUTTER_EVENT_PROPAGATE’.

4.7 Animation

Animation is a core concept of modern user interfaces; Clutter provides a complete and
powerful animation framework that automatically tweens the actor’s state without requiring
direct, frame by frame manipulation from your application code.

The implicit animation model of Clutter assumes that all the changes in an actor state
should be gradual and asynchronous; Clutter will automatically transition an actor’s prop-
erty change between the current state and the desired one without manual intervention.

By default, in the 1.0 API series, the transition happens with a duration of zero millisec-
onds, and the implicit animation is an opt in feature to retain backwards compatibility. In
order to enable implicit animations, it is necessary to change the easing state of an actor
by using clutter-actor-save-easing-state:

/* assume that the actor is currently positioned at (100, 100) */

clutter_actor_save_easing_state (actor);

clutter_actor_set_position (actor, 500, 500);

clutter_actor_restore_easing_state (actor);

The example above will trigger an implicit animation of the actor between its current
position to a new position.

Chapter 4: ClutterActor 9

It is possible to animate multiple properties of an actor at the same time, and you can
animate multiple actors at the same time as well, for instance:

/* animate the actor’s opacity and depth */

clutter_actor_save_easing_state (actor);

clutter_actor_set_opacity (actor, 0);

clutter_actor_set_depth (actor, -100);

clutter_actor_restore_easing_state (actor);

/* animate another actor’s opacity */

clutter_actor_save_easing_state (another_actor);

clutter_actor_set_opacity (another_actor, 255);

clutter_actor_set_depth (another_actor, 100);

clutter_actor_restore_easing_state (another_actor);

Implicit animations use a default duration of 250 milliseconds, and a default easing
mode of ‘CLUTTER_EASE_OUT_CUBIC’, unless you call clutter-actor-set-easing-mode

and clutter-actor-set-easing-duration after changing the easing state of the actor.

It is important to note that if you modify the state on an animatable property while a
transition is in flight, the transition’s final value will be updated, as well as its duration and
progress mode by using the current easing state; for instance, in the following example:

clutter_actor_save_easing_state (actor);

clutter_actor_set_x (actor, 200);

clutter_actor_restore_easing_state (actor);

clutter_actor_save_easing_state (actor);

clutter_actor_set_x (actor, 100);

clutter_actor_restore_easing_state (actor);

the first call to clutter-actor-set-x will begin a transition of the <"x"> property to
the value of 200; the second call to clutter-actor-set-x will change the transition’s final
value to 100.

It is possible to retrieve the <clutter-transition> used by the animatable properties
by using clutter-actor-get-transition and using the property name as the transition
name.

The explicit animation model supported by Clutter requires that you create a <clutter-
transition> object, and set the initial and final values. The transition will not start unless
you add it to the <clutter-actor>.

ClutterTransition *transition;

transition = clutter_property_transition_new ("opacity");

clutter_timeline_set_duration (CLUTTER_TIMELINE (transition), 3000);

clutter_timeline_set_repeat_count (CLUTTER_TIMELINE (transition), 2);

Chapter 4: ClutterActor 10

clutter_timeline_set_auto_reverse (CLUTTER_TIMELINE (transition), TRUE);

clutter_transition_set_interval (transition, clutter_interval_new (G_TYPE_UINT, 255, 0));

clutter_actor_add_transition (actor, "animate-opacity", transition);

The example above will animate the <"opacity"> property of an actor between fully
opaque and fully transparent, and back, over a span of 3 seconds. The animation does not
begin until it is added to the actor.

The explicit animation API should also be used when using custom animatable prop-
erties for <clutter-action>, <clutter-constraint>, and <clutter-effect> instances
associated to an actor; see the section on custom animatable properties below for an exam-
ple.

Finally, explicit animations are useful for creating animations that run continuously, for
instance:

/* this animation will pulse the actor’s opacity continuously */

ClutterTransition *transition;

ClutterInterval *interval;

transition = clutter_property_transition_new ("opacity");

/* we want to animate the opacity between 0 and 255 */

internal = clutter_interval_new (G_TYPE_UINT, 0, 255);

clutter_transition_set_interval (transition, interval);

/* over a one second duration, running an infinite amount of times */

clutter_timeline_set_duration (CLUTTER_TIMELINE (transition), 1000);

clutter_timeline_set_repeat_count (CLUTTER_TIMELINE (transition), -1);

/* we want to fade in and out, so we need to auto-reverse the transition */

clutter_timeline_set_auto_reverse (CLUTTER_TIMELINE (transition), TRUE);

/* and we want to use an easing function that eases both in and out */

clutter_timeline_set_progress_mode (CLUTTER_TIMELINE (transition),

CLUTTER_EASE_IN_OUT_CUBIC);

/* add the transition to the desired actor; this will

* start the animation.

*/

clutter_actor_add_transition (actor, "opacityAnimation", transition);

Chapter 4: ClutterActor 11

4.8 Implementing an actor

Careful consideration should be given when deciding to implement a <clutter-actor> sub-
class. It is generally recommended to implement a sub-class of <clutter-actor> only for
actors that should be used as leaf nodes of a scene graph.

If your actor should be painted in a custom way, you should override the <"paint"> signal
class handler. You can either opt to chain up to the parent class implementation or decide
to fully override the default paint implementation; Clutter will set up the transformations
and clip regions prior to emitting the <"paint"> signal.

By overriding the clutter-actor-class.get-preferred-width and clutter-actor-

class.get-preferred-height virtual functions it is possible to change or provide the
preferred size of an actor; similarly, by overriding the clutter-actor-class.allocate

virtual function it is possible to control the layout of the children of an actor. Make sure
to always chain up to the parent implementation of the clutter-actor-class.allocate

virtual function.

In general, it is strongly encouraged to use delegation and composition instead of direct
subclassing.

4.9 ClutterActor custom properties for <clutter-script>

<clutter-actor> defines a custom "rotation" property which allows a short-hand descrip-
tion of the rotations to be applied to an actor.

The syntax of the "rotation" property is the following:

"rotation" : [

{ "<axis>" : [<angle>, [<center>]] }

]

where the axis is the name of an enumeration value of type <clutter-rotate-axis>

and angle is a floating point value representing the rotation angle on the given axis, in
degrees.

The center array is optional, and if present it must contain the center of rotation as
described by two coordinates: Y and Z for "x-axis"; X and Z for "y-axis"; and X and Y for
"z-axis".

<clutter-actor> will also parse every positional and dimensional property defined as
a string through clutter-units-from-string; you should read the documentation for the
<clutter-units> parser format for the valid units and syntax.

4.10 Custom animatable properties

<clutter-actor> allows accessing properties of <clutter-action>, <clutter-effect>,
and <clutter-constraint> instances associated to an actor instance for animation pur-
poses.

In order to access a specific <clutter-action> or a <clutter-constraint> property
it is necessary to set the <"name"> property on the given action or constraint.

The property can be accessed using the following syntax:

Chapter 4: ClutterActor 12

@<section>.<meta-name>.<property-name>

The initial @ is mandatory.

The section fragment can be one between "actions", "constraints" and "effects".

The meta-name fragment is the name of the action or constraint, as specified by the
<"name"> property.

The property-name fragment is the name of the action or constraint property to be
animated.

The example below animates a <clutter-bind-constraint> applied to an actor using
clutter-actor-animate. The rect has a binding constraint for the origin actor, and in its
initial state is overlapping the actor to which is bound to.

constraint = clutter_bind_constraint_new (origin, CLUTTER_BIND_X, 0.0);

clutter_actor_meta_set_name (CLUTTER_ACTOR_META (constraint), "bind-x");

clutter_actor_add_constraint (rect, constraint);

constraint = clutter_bind_constraint_new (origin, CLUTTER_BIND_Y, 0.0);

clutter_actor_meta_set_name (CLUTTER_ACTOR_META (constraint), "bind-y");

clutter_actor_add_constraint (rect, constraint);

clutter_actor_set_reactive (origin, TRUE);

g_signal_connect (origin, "button-press-event",

G_CALLBACK (on_button_press),

rect);

On button press, the rectangle "slides" from behind the actor to which is bound to,
using the <"offset"> property to achieve the effect:

gboolean

on_button_press (ClutterActor *origin,

ClutterEvent *event,

ClutterActor *rect)

{

ClutterTransition *transition;

ClutterInterval *interval;

/* the offset that we want to apply; this will make the actor

* slide in from behind the origin and rest at the right of

* the origin, plus a padding value.

*/

float new_offset = clutter_actor_get_width (origin) + h_padding;

/* the property we wish to animate; the "@constraints" section

Chapter 4: ClutterActor 13

* tells Clutter to check inside the constraints associated

* with the actor; the "bind-x" section is the name of the

* constraint; and the "offset" is the name of the property

* on the constraint.

*/

const char *prop = "@constraints.bind-x.offset";

/* create a new transition for the given property */

transition = clutter_property_transition_new (prop);

/* set the easing mode and duration */

clutter_timeline_set_progress_mode (CLUTTER_TIMELINE (transition),

CLUTTER_EASE_OUT_CUBIC);

clutter_timeline_set_duration (CLUTTER_TIMELINE (transition), 500);

/* create the interval with the initial and final values */

interval = clutter_interval_new (G_TYPE_FLOAT, 0, new_offset);

clutter_transition_set_interval (transition, interval);

/* add the transition to the actor; this causes the animation

* to start. the name "offsetAnimation" can be used to retrieve

* the transition later.

*/

clutter_actor_add_transition (rect, "offsetAnimation", transition);

/* we handled the event */

return CLUTTER_EVENT_STOP;

}

4.11 Usage

[Function]clutter-actor-new ⇒ (ret <clutter-actor>)
Creates a new <clutter-actor>.

A newly created actor has a floating reference, which will be sunk when it is added
to another actor.

ret the newly created <clutter-actor>.

Since 1.10

[Function]clutter-actor-set-flags (self <clutter-actor>)
(flags <clutter-actor-flags>)

[Method]set-flags
Sets flags on self

This function will emit notifications for the changed properties

self a <clutter-actor>

Chapter 4: ClutterActor 14

flags the flags to set

Since 1.0

[Function]clutter-actor-unset-flags (self <clutter-actor>)
(flags <clutter-actor-flags>)

[Method]unset-flags
Unsets flags on self

This function will emit notifications for the changed properties

self a <clutter-actor>

flags the flags to unset

Since 1.0

[Function]clutter-actor-get-flags (self <clutter-actor>)
⇒ (ret <clutter-actor-flags>)

[Method]get-flags
Retrieves the flags set on self

self a <clutter-actor>

ret a bitwise or of <clutter-actor-flags> or 0

Since 1.0

[Function]clutter-actor-set-name (self <clutter-actor>) (name mchars)
[Method]set-name

Sets the given name to self. The name can be used to identify a <clutter-actor>.

self A <clutter-actor>

name Textual tag to apply to actor

[Function]clutter-actor-get-name (self <clutter-actor>) ⇒ (ret mchars)
[Method]get-name

Retrieves the name of self.

self A <clutter-actor>

ret the name of the actor, or ‘#f’. The returned string is owned by the actor
and should not be modified or freed.

[Function]clutter-actor-show (self <clutter-actor>)
[Method]show

Flags an actor to be displayed. An actor that isn’t shown will not be rendered on the
stage.

Actors are visible by default.

If this function is called on an actor without a parent, the <"show-on-set-parent">
will be set to ‘#t’ as a side effect.

self A <clutter-actor>

Chapter 4: ClutterActor 15

[Function]clutter-actor-hide (self <clutter-actor>)
[Method]hide

Flags an actor to be hidden. A hidden actor will not be rendered on the stage.

Actors are visible by default.

If this function is called on an actor without a parent, the <"show-on-set-parent">
property will be set to ‘#f’ as a side-effect.

self A <clutter-actor>

[Function]clutter-actor-realize (self <clutter-actor>)
[Method]realize

Realization informs the actor that it is attached to a stage. It can use this to allocate
resources if it wanted to delay allocation until it would be rendered. However it is
perfectly acceptable for an actor to create resources before being realized because
Clutter only ever has a single rendering context so that actor is free to be moved from
one stage to another.

This function does nothing if the actor is already realized.

Because a realized actor must have realized parent actors, calling clutter-actor-

realize will also realize all parents of the actor.

This function does not realize child actors, except in the special case that realizing
the stage, when the stage is visible, will suddenly map (and thus realize) the children
of the stage.

self A <clutter-actor>

[Function]clutter-actor-unrealize (self <clutter-actor>)
[Method]unrealize

Unrealization informs the actor that it may be being destroyed or moved to another
stage. The actor may want to destroy any underlying graphics resources at this
point. However it is perfectly acceptable for it to retain the resources until the actor
is destroyed because Clutter only ever uses a single rendering context and all of the
graphics resources are valid on any stage.

Because mapped actors must be realized, actors may not be unrealized if they are
mapped. This function hides the actor to be sure it isn’t mapped, an application-
visible side effect that you may not be expecting.

This function should not be called by application code.

self A <clutter-actor>

[Function]clutter-actor-paint (self <clutter-actor>)
[Method]paint

Renders the actor to display.

This function should not be called directly by applications. Call clutter-actor-
queue-redraw to queue paints, instead.

This function is context-aware, and will either cause a regular paint or a pick paint.

This function will emit the <"paint"> signal or the <"pick"> signal, depending on
the context.

Chapter 4: ClutterActor 16

This function does not paint the actor if the actor is set to 0, unless it is performing
a pick paint.

self A <clutter-actor>

[Function]clutter-actor-continue-paint (self <clutter-actor>)
[Method]continue-paint

Run the next stage of the paint sequence. This function should only be called within
the implementation of the run virtual of a <clutter-effect>. It will cause the run
method of the next effect to be applied, or it will paint the actual actor if the current
effect is the last effect in the chain.

self A <clutter-actor>

Since 1.8

[Function]clutter-actor-queue-redraw (self <clutter-actor>)
[Method]queue-redraw

Queues up a redraw of an actor and any children. The redraw occurs once the main
loop becomes idle (after the current batch of events has been processed, roughly).

Applications rarely need to call this, as redraws are handled automatically by modi-
fication functions.

This function will not do anything if self is not visible, or if the actor is inside an
invisible part of the scenegraph.

Also be aware that painting is a NOP for actors with an opacity of 0

When you are implementing a custom actor you must queue a redraw whenever some
private state changes that will affect painting or picking of your actor.

self A <clutter-actor>

[Function]clutter-actor-queue-relayout (self <clutter-actor>)
[Method]queue-relayout

Indicates that the actor’s size request or other layout-affecting properties may have
changed. This function is used inside <clutter-actor> subclass implementations,
not by applications directly.

Queueing a new layout automatically queues a redraw as well.

self A <clutter-actor>

Since 0.8

[Function]clutter-actor-destroy (self <clutter-actor>)
[Method]destroy

Destroys an actor. When an actor is destroyed, it will break any references it holds
to other objects. If the actor is inside a container, the actor will be removed.

When you destroy a container, its children will be destroyed as well.

Note: you cannot destroy the <clutter-stage> returned by clutter-stage-get-

default.

self a <clutter-actor>

Chapter 4: ClutterActor 17

[Function]clutter-actor-event (self <clutter-actor>)
(event <clutter-event>) (capture bool) ⇒ (ret bool)

[Method]event
This function is used to emit an event on the main stage. You should rarely need to
use this function, except for synthetising events.

actor a <clutter-actor>

event a <clutter-event>

capture TRUE if event in in capture phase, FALSE otherwise.

ret the return value from the signal emission: ‘#t’ if the actor handled the
event, or ‘#f’ if the event was not handled

Since 0.6

[Function]clutter-actor-should-pick-paint (self <clutter-actor>)
⇒ (ret bool)

[Method]should-pick-paint
Should be called inside the implementation of the <"pick"> virtual function in order
to check whether the actor should paint itself in pick mode or not.

This function should never be called directly by applications.

self A <clutter-actor>

ret ‘#t’ if the actor should paint its silhouette, ‘#f’ otherwise

[Function]clutter-actor-map (self <clutter-actor>)
[Method]map

Sets the ‘CLUTTER_ACTOR_MAPPED’ flag on the actor and possibly maps and realizes
its children if they are visible. Does nothing if the actor is not visible.

Calling this function is strongly disencouraged: the default implementation of
clutter-actor-class.map will map all the children of an actor when mapping its
parent.

When overriding map, it is mandatory to chain up to the parent implementation.

self A <clutter-actor>

Since 1.0

[Function]clutter-actor-unmap (self <clutter-actor>)
[Method]unmap

Unsets the ‘CLUTTER_ACTOR_MAPPED’ flag on the actor and possibly unmaps its chil-
dren if they were mapped.

Calling this function is not encouraged: the default <clutter-actor> implementation
of clutter-actor-class.unmap will also unmap any eventual children by default
when their parent is unmapped.

When overriding clutter-actor-class.unmap, it is mandatory to chain up to the
parent implementation.

Chapter 4: ClutterActor 18

� �
It is important to note that the implementation of the clutter-actor-class.unmap
virtual function may be called after the clutter-actor-class.destroy or the g-

object-class.dispose implementation, but it is guaranteed to be called before the
g-object-class.finalize implementation.
 	
self A <clutter-actor>

Since 1.0

[Function]clutter-actor-has-overlaps (self <clutter-actor>) ⇒ (ret bool)
[Method]has-overlaps

Asks the actor’s implementation whether it may contain overlapping primitives.

For example; Clutter may use this to determine whether the painting should be
redirected to an offscreen buffer to correctly implement the opacity property.

Custom actors can override the default response by implementing the
<clutter-actor>has-overlaps virtual function. See clutter-actor-set-

offscreen-redirect for more information.

self A <clutter-actor>

ret ‘#t’ if the actor may have overlapping primitives, and ‘#f’ otherwise

Since 1.8

[Function]clutter-actor-allocate (self <clutter-actor>)
(box <clutter-actor-box>) (flags <clutter-allocation-flags>)

[Method]allocate
Called by the parent of an actor to assign the actor its size. Should never be called
by applications (except when implementing a container or layout manager).

Actors can know from their allocation box whether they have moved with respect to
their parent actor. The flags parameter describes additional information about the
allocation, for instance whether the parent has moved with respect to the stage, for
example because a grandparent’s origin has moved.

self A <clutter-actor>

box new allocation of the actor, in parent-relative coordinates

flags flags that control the allocation

Since 0.8

[Function]clutter-actor-allocate-align-fill (self <clutter-actor>)
(box <clutter-actor-box>) (x align double) (y align double)
(x fill bool) (y fill bool) (flags <clutter-allocation-flags>)

[Method]allocate-align-fill
Allocates self by taking into consideration the available allocation area; an alignment
factor on either axis; and whether the actor should fill the allocation on either axis.

The box should contain the available allocation width and height; if the x1 and y1
members of <clutter-actor-box> are not set to 0, the allocation will be offset by
their value.

Chapter 4: ClutterActor 19

This function takes into consideration the geometry request specified by the
<"request-mode"> property, and the text direction.

This function is useful for fluid layout managers, like <clutter-bin-layout> or
<clutter-table-layout>

self a <clutter-actor>

box a <clutter-actor-box>, containing the available width and height

x-align the horizontal alignment, between 0 and 1

y-align the vertical alignment, between 0 and 1

x-fill whether the actor should fill horizontally

y-fill whether the actor should fill vertically

flags allocation flags to be passed to clutter-actor-allocate

Since 1.4

[Function]clutter-actor-set-allocation (self <clutter-actor>)
(box <clutter-actor-box>) (flags <clutter-allocation-flags>)

[Method]set-allocation
Stores the allocation of self as defined by box.

This function can only be called from within the implementation of the clutter-

actor-class.allocate virtual function.

The allocation should have been adjusted to take into account constraints, align-
ment, and margin properties. If you are implementing a <clutter-actor> subclass
that provides its own layout management policy for its children instead of using a
<clutter-layout-manager> delegate, you should not call this function on the chil-
dren of self ; instead, you should call clutter-actor-allocate, which will adjust the
allocation box for you.

This function should only be used by subclasses of <clutter-actor> that wish to
store their allocation but cannot chain up to the parent’s implementation; the default
implementation of the clutter-actor-class.allocate virtual function will call this
function.

It is important to note that, while chaining up was the recommended behaviour for
<clutter-actor> subclasses prior to the introduction of this function, it is recom-
mended to call clutter-actor-set-allocation instead.

If the <clutter-actor> is using a <clutter-layout-manager> delegate object to
handle the allocation of its children, this function will call the clutter-layout-

manager-allocate function only if the ‘CLUTTER_DELEGATE_LAYOUT’ flag is set on
flags, otherwise it is expected that the subclass will call clutter-layout-manager-
allocate by itself. For instance, the following code:

static void

my_actor_allocate (ClutterActor *actor,

const ClutterActorBox *allocation,

ClutterAllocationFlags flags)

Chapter 4: ClutterActor 20

{

ClutterActorBox new_alloc;

ClutterAllocationFlags new_flags;

adjust_allocation (allocation, &new_alloc);

new_flags = flags | CLUTTER_DELEGATE_LAYOUT;

/* this will use the layout manager set on the actor */

clutter_actor_set_allocation (actor, &new_alloc, new_flags);

}

is equivalent to this:

static void

my_actor_allocate (ClutterActor *actor,

const ClutterActorBox *allocation,

ClutterAllocationFlags flags)

{

ClutterLayoutManager *layout;

ClutterActorBox new_alloc;

adjust_allocation (allocation, &new_alloc);

clutter_actor_set_allocation (actor, &new_alloc, flags);

layout = clutter_actor_get_layout_manager (actor);

clutter_layout_manager_allocate (layout,

CLUTTER_CONTAINER (actor),

&new_alloc,

flags);

}

self a <clutter-actor>

box a <clutter-actor-box>

flags allocation flags

Since 1.10

[Function]clutter-actor-get-allocation-box (self <clutter-actor>)
(box <clutter-actor-box>)

[Method]get-allocation-box
Gets the layout box an actor has been assigned. The allocation can only be assumed
valid inside a paint method; anywhere else, it may be out-of-date.

An allocation does not incorporate the actor’s scale or anchor point; those transfor-
mations do not affect layout, only rendering.

Chapter 4: ClutterActor 21

� �
Do not call any of the clutter actor get allocation *() family of functions inside
the implementation of the get-preferred-width or get-preferred-height virtual
functions.
 	
self A <clutter-actor>

box the function fills this in with the actor’s allocation.

Since 0.8

[Function]clutter-actor-get-preferred-size (self <clutter-actor>)
⇒ (min width p float) (min height p float) (natural width p float)
(natural height p float)

[Method]get-preferred-size
Computes the preferred minimum and natural size of an actor, taking into account
the actor’s geometry management (either height-for-width or width-for-height).

The width and height used to compute the preferred height and preferred width are
the actor’s natural ones.

If you need to control the height for the preferred width, or the width for the preferred
height, you should use clutter-actor-get-preferred-width and clutter-actor-

get-preferred-height, and check the actor’s preferred geometry management using
the <"request-mode"> property.

self a <clutter-actor>

min-width-p
return location for the minimum width, or ‘#f’.

min-height-p
return location for the minimum height, or ‘#f’.

natural-width-p
return location for the natural width, or ‘#f’.

natural-height-p
return location for the natural height, or ‘#f’.

Since 0.8

[Function]clutter-actor-get-preferred-width (self <clutter-actor>)
(for height float) ⇒ (min width p float) (natural width p float)

[Method]get-preferred-width
Computes the requested minimum and natural widths for an actor, optionally de-
pending on the specified height, or if they are already computed, returns the cached
values.

An actor may not get its request - depending on the layout manager that’s in effect.

A request should not incorporate the actor’s scale or anchor point; those transforma-
tions do not affect layout, only rendering.

self A <clutter-actor>

for-height available height when computing the preferred width, or a negative value
to indicate that no height is defined

Chapter 4: ClutterActor 22

min-width-p
return location for minimum width, or ‘#f’.

natural-width-p
return location for the natural width, or ‘#f’.

Since 0.8

[Function]clutter-actor-get-preferred-height (self <clutter-actor>)
(for width float) ⇒ (min height p float) (natural height p float)

[Method]get-preferred-height
Computes the requested minimum and natural heights for an actor, or if they are
already computed, returns the cached values.

An actor may not get its request - depending on the layout manager that’s in effect.

A request should not incorporate the actor’s scale or anchor point; those transforma-
tions do not affect layout, only rendering.

self A <clutter-actor>

for-width available width to assume in computing desired height, or a negative value
to indicate that no width is defined

min-height-p
return location for minimum height, or ‘#f’.

natural-height-p
return location for natural height, or ‘#f’.

Since 0.8

[Function]clutter-actor-set-request-mode (self <clutter-actor>)
(mode <clutter-request-mode>)

[Method]set-request-mode
Sets the geometry request mode of self.

The mode determines the order for invoking clutter-actor-get-preferred-width

and clutter-actor-get-preferred-height

self a <clutter-actor>

mode the request mode

Since 1.2

[Function]clutter-actor-get-request-mode (self <clutter-actor>)
⇒ (ret <clutter-request-mode>)

[Method]get-request-mode
Retrieves the geometry request mode of self

self a <clutter-actor>

ret the request mode for the actor

Since 1.2

Chapter 4: ClutterActor 23

[Function]clutter-actor-has-allocation (self <clutter-actor>)
⇒ (ret bool)

[Method]has-allocation
Checks if the actor has an up-to-date allocation assigned to it. This means that
the actor should have an allocation: it’s visible and has a parent. It also means that
there is no outstanding relayout request in progress for the actor or its children (There
might be other outstanding layout requests in progress that will cause the actor to
get a new allocation when the stage is laid out, however).

If this function returns ‘#f’, then the actor will normally be allocated before it is next
drawn on the screen.

self a <clutter-actor>

ret ‘#t’ if the actor has an up-to-date allocation

Since 1.4

[Function]clutter-actor-set-x-align (self <clutter-actor>)
(x align <clutter-actor-align>)

[Method]set-x-align
Sets the horizontal alignment policy of a <clutter-actor>, in case the actor received
extra horizontal space.

See also the <"x-align"> property.

self a <clutter-actor>

x-align the horizontal alignment policy

Since 1.10

[Function]clutter-actor-get-x-align (self <clutter-actor>)
⇒ (ret <clutter-actor-align>)

[Method]get-x-align
Retrieves the horizontal alignment policy set using clutter-actor-set-x-align.

self a <clutter-actor>

ret the horizontal alignment policy.

Since 1.10

[Function]clutter-actor-set-y-align (self <clutter-actor>)
(y align <clutter-actor-align>)

[Method]set-y-align
Sets the vertical alignment policy of a <clutter-actor>, in case the actor received
extra vertical space.

See also the <"y-align"> property.

self a <clutter-actor>

y-align the vertical alignment policy

Since 1.10

Chapter 4: ClutterActor 24

[Function]clutter-actor-get-y-align (self <clutter-actor>)
⇒ (ret <clutter-actor-align>)

[Method]get-y-align
Retrieves the vertical alignment policy set using clutter-actor-set-y-align.

self a <clutter-actor>

ret the vertical alignment policy.

Since 1.10

[Function]clutter-margin-new ⇒ (ret <clutter-margin>)
Creates a new <clutter-margin>.

ret a newly allocated <clutter-margin>. Use clutter-margin-free to free
the resources associated with it when done.

Since 1.10

[Function]clutter-actor-set-margin (self <clutter-actor>)
(margin <clutter-margin>)

[Method]set-margin
Sets all the components of the margin of a <clutter-actor>.

self a <clutter-actor>

margin a <clutter-margin>

Since 1.10

[Function]clutter-actor-get-margin (self <clutter-actor>)
(margin <clutter-margin>)

[Method]get-margin
Retrieves all the components of the margin of a <clutter-actor>.

self a <clutter-actor>

margin return location for a <clutter-margin>.

Since 1.10

[Function]clutter-actor-set-margin-top (self <clutter-actor>)
(margin float)

[Method]set-margin-top
Sets the margin from the top of a <clutter-actor>.

self a <clutter-actor>

margin the top margin

Since 1.10

[Function]clutter-actor-get-margin-top (self <clutter-actor>)
⇒ (ret float)

[Method]get-margin-top
Retrieves the top margin of a <clutter-actor>.

Chapter 4: ClutterActor 25

self a <clutter-actor>

ret the top margin

Since 1.10

[Function]clutter-actor-set-margin-right (self <clutter-actor>)
(margin float)

[Method]set-margin-right
Sets the margin from the right of a <clutter-actor>.

self a <clutter-actor>

margin the right margin

Since 1.10

[Function]clutter-actor-get-margin-right (self <clutter-actor>)
⇒ (ret float)

[Method]get-margin-right
Retrieves the right margin of a <clutter-actor>.

self a <clutter-actor>

ret the right margin

Since 1.10

[Function]clutter-actor-set-margin-bottom (self <clutter-actor>)
(margin float)

[Method]set-margin-bottom
Sets the margin from the bottom of a <clutter-actor>.

self a <clutter-actor>

margin the bottom margin

Since 1.10

[Function]clutter-actor-get-margin-bottom (self <clutter-actor>)
⇒ (ret float)

[Method]get-margin-bottom
Retrieves the bottom margin of a <clutter-actor>.

self a <clutter-actor>

ret the bottom margin

Since 1.10

[Function]clutter-actor-set-margin-left (self <clutter-actor>)
(margin float)

[Method]set-margin-left
Sets the margin from the left of a <clutter-actor>.

self a <clutter-actor>

margin the left margin

Since 1.10

Chapter 4: ClutterActor 26

[Function]clutter-actor-get-margin-left (self <clutter-actor>)
⇒ (ret float)

[Method]get-margin-left
Retrieves the left margin of a <clutter-actor>.

self a <clutter-actor>

ret the left margin

Since 1.10

[Function]clutter-actor-set-layout-manager (self <clutter-actor>)
(manager <clutter-layout-manager>)

[Method]set-layout-manager
Sets the <clutter-layout-manager> delegate object that will be used to lay out the
children of self.

The <clutter-actor> will take a reference on the passed manager which will be
released either when the layout manager is removed, or when the actor is destroyed.

self a <clutter-actor>

manager a <clutter-layout-manager>, or ‘#f’ to unset it.

Since 1.10

[Function]clutter-actor-get-layout-manager (self <clutter-actor>)
⇒ (ret <clutter-layout-manager>)

[Method]get-layout-manager
Retrieves the <clutter-layout-manager> used by self.

self a <clutter-actor>

ret a pointer to the <clutter-layout-manager>, or ‘#f’.

Since 1.10

[Function]clutter-actor-set-background-color (self <clutter-actor>)
(color <clutter-color>)

[Method]set-background-color
Sets the background color of a <clutter-actor>.

The background color will be used to cover the whole allocation of the actor. The
default background color of an actor is transparent.

To check whether an actor has a background color, you can use the <"background-

color-set"> actor property.

The <"background-color"> property is animatable.

self a <clutter-actor>

color a <clutter-color>, or ‘#f’ to unset a previously set color.

Since 1.10

Chapter 4: ClutterActor 27

[Function]clutter-actor-get-background-color (self <clutter-actor>)
(color <clutter-color>)

[Method]get-background-color
Retrieves the color set using clutter-actor-set-background-color.

self a <clutter-actor>

color return location for a <clutter-color>.

Since 1.10

[Function]clutter-actor-set-size (self <clutter-actor>) (width float)
(height float)

[Method]set-size
Sets the actor’s size request in pixels. This overrides any "normal" size request the
actor would have. For example a text actor might normally request the size of the
text; this function would force a specific size instead.

If width and/or height are -1 the actor will use its "normal" size request instead of
overriding it, i.e. you can "unset" the size with -1.

This function sets or unsets both the minimum and natural size.

self A <clutter-actor>

width New width of actor in pixels, or -1

height New height of actor in pixels, or -1

[Function]clutter-actor-get-size (self <clutter-actor>) ⇒ (width float)
(height float)

[Method]get-size
This function tries to "do what you mean" and return the size an actor will have. If
the actor has a valid allocation, the allocation will be returned; otherwise, the actors
natural size request will be returned.

If you care whether you get the request vs. the allocation, you should probably call
a different function like clutter-actor-get-allocation-box or clutter-actor-

get-preferred-width.

self A <clutter-actor>

width return location for the width, or ‘#f’.

height return location for the height, or ‘#f’.

Since 0.2

[Function]clutter-actor-set-position (self <clutter-actor>) (x float)
(y float)

[Method]set-position
Sets the actor’s fixed position in pixels relative to any parent actor.

If a layout manager is in use, this position will override the layout manager and force
a fixed position.

self A <clutter-actor>

Chapter 4: ClutterActor 28

x New left position of actor in pixels.

y New top position of actor in pixels.

[Function]clutter-actor-get-position (self <clutter-actor>) ⇒ (x float)
(y float)

[Method]get-position
This function tries to "do what you mean" and tell you where the actor is, prior to
any transformations. Retrieves the fixed position of an actor in pixels, if one has
been set; otherwise, if the allocation is valid, returns the actor’s allocated position;
otherwise, returns 0,0.

The returned position is in pixels.

self a <clutter-actor>

x return location for the X coordinate, or ‘#f’.

y return location for the Y coordinate, or ‘#f’.

Since 0.6

[Function]clutter-actor-set-width (self <clutter-actor>) (width float)
[Method]set-width

Forces a width on an actor, causing the actor’s preferred width and height (if any) to
be ignored.

If width is -1 the actor will use its preferred width request instead of overriding it,
i.e. you can "unset" the width with -1.

This function sets both the minimum and natural size of the actor.

self A <clutter-actor>

width Requested new width for the actor, in pixels, or -1

Since 0.2

[Function]clutter-actor-get-width (self <clutter-actor>) ⇒ (ret float)
[Method]get-width

Retrieves the width of a <clutter-actor>.

If the actor has a valid allocation, this function will return the width of the allocated
area given to the actor.

If the actor does not have a valid allocation, this function will return the actor’s
natural width, that is the preferred width of the actor.

If you care whether you get the preferred width or the width that has been assigned
to the actor, you should probably call a different function like clutter-actor-get-

allocation-box to retrieve the allocated size or clutter-actor-get-preferred-

width to retrieve the preferred width.

If an actor has a fixed width, for instance a width that has been assigned using
clutter-actor-set-width, the width returned will be the same value.

self A <clutter-actor>

ret the width of the actor, in pixels

Chapter 4: ClutterActor 29

[Function]clutter-actor-set-height (self <clutter-actor>) (height float)
[Method]set-height

Forces a height on an actor, causing the actor’s preferred width and height (if any)
to be ignored.

If height is -1 the actor will use its preferred height instead of overriding it, i.e. you
can "unset" the height with -1.

This function sets both the minimum and natural size of the actor.

self A <clutter-actor>

height Requested new height for the actor, in pixels, or -1

Since 0.2

[Function]clutter-actor-get-height (self <clutter-actor>) ⇒ (ret float)
[Method]get-height

Retrieves the height of a <clutter-actor>.

If the actor has a valid allocation, this function will return the height of the allocated
area given to the actor.

If the actor does not have a valid allocation, this function will return the actor’s
natural height, that is the preferred height of the actor.

If you care whether you get the preferred height or the height that has been assigned
to the actor, you should probably call a different function like clutter-actor-get-

allocation-box to retrieve the allocated size or clutter-actor-get-preferred-

height to retrieve the preferred height.

If an actor has a fixed height, for instance a height that has been assigned using
clutter-actor-set-height, the height returned will be the same value.

self A <clutter-actor>

ret the height of the actor, in pixels

[Function]clutter-actor-set-x (self <clutter-actor>) (x float)
[Method]set-x

Sets the actor’s X coordinate, relative to its parent, in pixels.

Overrides any layout manager and forces a fixed position for the actor.

The <"x"> property is animatable.

self a <clutter-actor>

x the actor’s position on the X axis

Since 0.6

[Function]clutter-actor-get-x (self <clutter-actor>) ⇒ (ret float)
[Method]get-x

Retrieves the X coordinate of a <clutter-actor>.

This function tries to "do what you mean", by returning the correct value depending
on the actor’s state.

Chapter 4: ClutterActor 30

If the actor has a valid allocation, this function will return the X coordinate of the
origin of the allocation box.

If the actor has any fixed coordinate set using clutter-actor-set-x, clutter-

actor-set-position or clutter-actor-set-geometry, this function will return
that coordinate.

If both the allocation and a fixed position are missing, this function will return 0.

self A <clutter-actor>

ret the X coordinate, in pixels, ignoring any transformation (i.e. scaling,
rotation)

[Function]clutter-actor-set-y (self <clutter-actor>) (y float)
[Method]set-y

Sets the actor’s Y coordinate, relative to its parent, in pixels.#

Overrides any layout manager and forces a fixed position for the actor.

The <"y"> property is animatable.

self a <clutter-actor>

y the actor’s position on the Y axis

Since 0.6

[Function]clutter-actor-get-y (self <clutter-actor>) ⇒ (ret float)
[Method]get-y

Retrieves the Y coordinate of a <clutter-actor>.

This function tries to "do what you mean", by returning the correct value depending
on the actor’s state.

If the actor has a valid allocation, this function will return the Y coordinate of the
origin of the allocation box.

If the actor has any fixed coordinate set using clutter-actor-set-y, clutter-

actor-set-position or clutter-actor-set-geometry, this function will return
that coordinate.

If both the allocation and a fixed position are missing, this function will return 0.

self A <clutter-actor>

ret the Y coordinate, in pixels, ignoring any transformation (i.e. scaling,
rotation)

[Function]clutter-actor-move-by (self <clutter-actor>) (dx float)
(dy float)

[Method]move-by
Moves an actor by the specified distance relative to its current position in pixels.

This function modifies the fixed position of an actor and thus removes it from any
layout management. Another way to move an actor is with an anchor point, see
clutter-actor-set-anchor-point.

self A <clutter-actor>

Chapter 4: ClutterActor 31

dx Distance to move Actor on X axis.

dy Distance to move Actor on Y axis.

Since 0.2

[Function]clutter-actor-set-depth (self <clutter-actor>) (depth float)
[Method]set-depth

Sets the Z coordinate of self to depth.

The unit used by depth is dependant on the perspective setup. See also clutter-

stage-set-perspective.

self a <clutter-actor>

depth Z co-ord

[Function]clutter-actor-get-depth (self <clutter-actor>) ⇒ (ret float)
[Method]get-depth

Retrieves the depth of self.

self a <clutter-actor>

ret the depth of the actor

[Function]clutter-actor-set-scale (self <clutter-actor>) (scale x double)
(scale y double)

[Method]set-scale
Scales an actor with the given factors. The scaling is relative to the scale center and
the anchor point. The scale center is unchanged by this function and defaults to 0,0.

The <"scale-x"> and <"scale-y"> properties are animatable.

self A <clutter-actor>

scale-x double factor to scale actor by horizontally.

scale-y double factor to scale actor by vertically.

Since 0.2

[Function]clutter-actor-set-scale-full (self <clutter-actor>)
(scale x double) (scale y double) (center x float) (center y float)

[Method]set-scale-full
Scales an actor with the given factors around the given center point. The center point
is specified in pixels relative to the anchor point (usually the top left corner of the
actor).

The <"scale-x"> and <"scale-y"> properties are animatable.

self A <clutter-actor>

scale-x double factor to scale actor by horizontally.

scale-y double factor to scale actor by vertically.

center-x X coordinate of the center of the scale.

center-y Y coordinate of the center of the scale

Since 1.0

Chapter 4: ClutterActor 32

[Function]clutter-actor-get-scale (self <clutter-actor>)
⇒ (scale x double) (scale y double)

[Method]get-scale
Retrieves an actors scale factors.

self A <clutter-actor>

scale-x Location to store horizonal scale factor, or ‘#f’.

scale-y Location to store vertical scale factor, or ‘#f’.

Since 0.2

[Function]clutter-actor-get-scale-center (self <clutter-actor>)
⇒ (center x float) (center y float)

[Method]get-scale-center
Retrieves the scale center coordinate in pixels relative to the top left corner of the
actor. If the scale center was specified using a <clutter-gravity> this will calculate
the pixel offset using the current size of the actor.

self A <clutter-actor>

center-x Location to store the X position of the scale center, or ‘#f’.

center-y Location to store the Y position of the scale center, or ‘#f’.

Since 1.0

[Function]clutter-actor-get-scale-gravity (self <clutter-actor>)
⇒ (ret <clutter-gravity>)

[Method]get-scale-gravity
Retrieves the scale center as a compass direction. If the scale center was specified in
pixels or units this will return ‘CLUTTER_GRAVITY_NONE’.

self A <clutter-actor>

ret the scale gravity

Since 1.0

[Function]clutter-actor-is-scaled (self <clutter-actor>) ⇒ (ret bool)
[Method]is-scaled

Checks whether the actor is scaled in either dimension.

self a <clutter-actor>

ret ‘#t’ if the actor is scaled.

Since 0.6

[Function]clutter-actor-set-rotation (self <clutter-actor>)
(axis <clutter-rotate-axis>) (angle double) (x float) (y float)
(z float)

[Method]set-rotation
Sets the rotation angle of self around the given axis.

The rotation center coordinates used depend on the value of axis:

Chapter 4: ClutterActor 33

•
•
•

‘CLUTTER_X_AXIS’ requires y and z

‘CLUTTER_Y_AXIS’ requires x and z

‘CLUTTER_Z_AXIS’ requires x and y

The rotation coordinates are relative to the anchor point of the actor, set using
clutter-actor-set-anchor-point. If no anchor point is set, the upper left corner
is assumed as the origin.

self a <clutter-actor>

axis the axis of rotation

angle the angle of rotation

x X coordinate of the rotation center

y Y coordinate of the rotation center

z Z coordinate of the rotation center

Since 0.8

[Function]clutter-actor-get-rotation (self <clutter-actor>)
(axis <clutter-rotate-axis>) ⇒ (ret double) (x float) (y float)
(z float)

[Method]get-rotation
Retrieves the angle and center of rotation on the given axis, set using clutter-actor-
set-rotation.

self a <clutter-actor>

axis the axis of rotation

x return value for the X coordinate of the center of rotation.

y return value for the Y coordinate of the center of rotation.

z return value for the Z coordinate of the center of rotation.

ret the angle of rotation

Since 0.8

[Function]clutter-actor-is-rotated (self <clutter-actor>) ⇒ (ret bool)
[Method]is-rotated

Checks whether any rotation is applied to the actor.

self a <clutter-actor>

ret ‘#t’ if the actor is rotated.

Since 0.6

Chapter 4: ClutterActor 34

[Function]clutter-actor-set-anchor-point (self <clutter-actor>)
(anchor x float) (anchor y float)

[Method]set-anchor-point
Sets an anchor point for self. The anchor point is a point in the coordinate space of
an actor to which the actor position within its parent is relative; the default is (0, 0),
i.e. the top-left corner of the actor.

self a <clutter-actor>

anchor-x X coordinate of the anchor point

anchor-y Y coordinate of the anchor point

Since 0.6

[Function]clutter-actor-get-anchor-point (self <clutter-actor>)
⇒ (anchor x float) (anchor y float)

[Method]get-anchor-point
Gets the current anchor point of the actor in pixels.

self a <clutter-actor>

anchor-x return location for the X coordinate of the anchor point.

anchor-y return location for the Y coordinate of the anchor point.

Since 0.6

[Function]clutter-actor-move-anchor-point (self <clutter-actor>)
(anchor x float) (anchor y float)

[Method]move-anchor-point
Sets an anchor point for the actor, and adjusts the actor postion so that the relative
position of the actor toward its parent remains the same.

self a <clutter-actor>

anchor-x X coordinate of the anchor point

anchor-y Y coordinate of the anchor point

Since 0.6

[Function]clutter-actor-transform-stage-point (self <clutter-actor>)
(x float) (y float) ⇒ (ret bool) (x out float) (y out float)

[Method]transform-stage-point
This function translates screen coordinates (x, y) to coordinates relative to the actor.
For example, it can be used to translate screen events from global screen coordinates
into actor-local coordinates.

The conversion can fail, notably if the transform stack results in the actor being
projected on the screen as a mere line.

The conversion should not be expected to be pixel-perfect due to the nature of the
operation. In general the error grows when the skewing of the actor rectangle on
screen increases.

This function can be computationally intensive.

This function only works when the allocation is up-to-date, i.e. inside of paint.

Chapter 4: ClutterActor 35

self A <clutter-actor>

x x screen coordinate of the point to unproject.

y y screen coordinate of the point to unproject.

x-out return location for the unprojected x coordinance.

y-out return location for the unprojected y coordinance.

ret ‘#t’ if conversion was successful.

Since 0.6

[Function]clutter-actor-get-transformed-size (self <clutter-actor>)
⇒ (width float) (height float)

[Method]get-transformed-size
Gets the absolute size of an actor in pixels, taking into account the scaling factors.

If the actor has a valid allocation, the allocated size will be used. If the actor has not
a valid allocation then the preferred size will be transformed and returned.

If you want the transformed allocation, see clutter-actor-get-abs-allocation-

vertices instead.� �
When the actor (or one of its ancestors) is rotated around the X or Y axis, it no
longer appears as on the stage as a rectangle, but as a generic quadrangle; in that
case this function returns the size of the smallest rectangle that encapsulates the
entire quad. Please note that in this case no assumptions can be made about the
relative position of this envelope to the absolute position of the actor, as returned
by clutter-actor-get-transformed-position; if you need this information, you
need to use clutter-actor-get-abs-allocation-vertices to get the coords of the
actual quadrangle.
 	
self A <clutter-actor>

width return location for the width, or ‘#f’.

height return location for the height, or ‘#f’.

Since 0.8

[Function]clutter-actor-get-paint-opacity (self <clutter-actor>)
⇒ (ret unsigned-int8)

[Method]get-paint-opacity
Retrieves the absolute opacity of the actor, as it appears on the stage.

This function traverses the hierarchy chain and composites the opacity of the actor
with that of its parents.

This function is intended for subclasses to use in the paint virtual function, to paint
themselves with the correct opacity.

self A <clutter-actor>

ret The actor opacity value.

Since 0.8

Chapter 4: ClutterActor 36

[Function]clutter-actor-get-paint-visibility (self <clutter-actor>)
⇒ (ret bool)

[Method]get-paint-visibility
Retrieves the ’paint’ visibility of an actor recursively checking for non visible parents.

This is by definition the same as ‘CLUTTER_ACTOR_IS_MAPPED’.

self A <clutter-actor>

ret ‘#t’ if the actor is visibile and will be painted.

Since 0.8.4

[Function]clutter-actor-get-paint-box (self <clutter-actor>)
(box <clutter-actor-box>) ⇒ (ret bool)

[Method]get-paint-box
Retrieves the paint volume of the passed <clutter-actor>, and transforms it into a
2D bounding box in stage coordinates.

This function is useful to determine the on screen area occupied by the actor. The
box is only an approximation and may often be considerably larger due to the op-
timizations used to calculate the box. The box is never smaller though, so it can
reliably be used for culling.

There are times when a 2D paint box can’t be determined, e.g. because the actor
isn’t yet parented under a stage or because the actor is unable to determine a paint
volume.

self a <clutter-actor>

box return location for a <clutter-actor-box>.

ret ‘#t’ if a 2D paint box could be determined, else ‘#f’.

Since 1.6

[Function]clutter-actor-set-content (self <clutter-actor>)
(content <clutter-content>)

[Method]set-content
Sets the contents of a <clutter-actor>.

self a <clutter-actor>

content a <clutter-content>, or ‘#f’.

Since 1.10

[Function]clutter-actor-get-content (self <clutter-actor>)
⇒ (ret <clutter-content>)

[Method]get-content
Retrieves the contents of self.

self a <clutter-actor>

ret a pointer to the <clutter-content> instance, or ‘#f’ if none was set.

Since 1.10

Chapter 4: ClutterActor 37

[Function]clutter-actor-set-content-gravity (self <clutter-actor>)
(gravity <clutter-content-gravity>)

[Method]set-content-gravity
Sets the gravity of the <clutter-content> used by self.

See the description of the <"content-gravity"> property for more information.

The <"content-gravity"> property is animatable.

self a <clutter-actor>

gravity the <clutter-content-gravity>

Since 1.10

[Function]clutter-actor-get-content-gravity (self <clutter-actor>)
⇒ (ret <clutter-content-gravity>)

[Method]get-content-gravity
Retrieves the content gravity as set using clutter-actor-get-content-gravity.

self a <clutter-actor>

ret the content gravity

Since 1.10

[Function]clutter-actor-get-content-box (self <clutter-actor>)
(box <clutter-actor-box>)

[Method]get-content-box
Retrieves the bounding box for the <clutter-content> of self.

The bounding box is relative to the actor’s allocation.

If no <clutter-content> is set for self, or if self has not been allocated yet, then the
result is undefined.

The content box is guaranteed to be, at most, as big as the allocation of the <clutter-
actor>.

If the <clutter-content> used by the actor has a preferred size, then it is possible
to modify the content box by using the <"content-gravity"> property.

self a <clutter-actor>

box the return location for the bounding box for the <clutter-content>.

Since 1.10

[Function]clutter-actor-set-clip (self <clutter-actor>) (xoff float)
(yoff float) (width float) (height float)

[Method]set-clip
Sets clip area for self. The clip area is always computed from the upper left corner of
the actor, even if the anchor point is set otherwise.

self A <clutter-actor>

xoff X offset of the clip rectangle

yoff Y offset of the clip rectangle

Chapter 4: ClutterActor 38

width Width of the clip rectangle

height Height of the clip rectangle

Since 0.6

[Function]clutter-actor-remove-clip (self <clutter-actor>)
[Method]remove-clip

Removes clip area from self.

self A <clutter-actor>

[Function]clutter-actor-has-clip (self <clutter-actor>) ⇒ (ret bool)
[Method]has-clip

Determines whether the actor has a clip area set or not.

self a <clutter-actor>

ret ‘#t’ if the actor has a clip area set.

Since 0.1.1

[Function]clutter-actor-get-clip (self <clutter-actor>) ⇒ (xoff float)
(yoff float) (width float) (height float)

[Method]get-clip
Gets the clip area for self, if any is set

self a <clutter-actor>

xoff return location for the X offset of the clip rectangle, or ‘#f’.

yoff return location for the Y offset of the clip rectangle, or ‘#f’.

width return location for the width of the clip rectangle, or ‘#f’.

height return location for the height of the clip rectangle, or ‘#f’.

Since 0.6

[Function]clutter-actor-set-opacity (self <clutter-actor>)
(opacity unsigned-int8)

[Method]set-opacity
Sets the actor’s opacity, with zero being completely transparent and 255 (0xff) being
fully opaque.

The <"opacity"> property is animatable.

self A <clutter-actor>

opacity New opacity value for the actor.

[Function]clutter-actor-get-opacity (self <clutter-actor>)
⇒ (ret unsigned-int8)

[Method]get-opacity
Retrieves the opacity value of an actor, as set by clutter-actor-set-opacity.

For retrieving the absolute opacity of the actor inside a paint virtual function, see
clutter-actor-get-paint-opacity.

Chapter 4: ClutterActor 39

self a <clutter-actor>

ret the opacity of the actor

[Function]clutter-actor-is-in-clone-paint (self <clutter-actor>)
⇒ (ret bool)

[Method]is-in-clone-paint
Checks whether self is being currently painted by a <clutter-clone>

This function is useful only inside the ::paint virtual function implementations or
within handlers for the <"paint"> signal

This function should not be used by applications

self a <clutter-actor>

ret ‘#t’ if the <clutter-actor> is currently being painted by a <clutter-

clone>, and ‘#f’ otherwise

Since 1.0

[Function]clutter-actor-add-child (self <clutter-actor>)
(child <clutter-actor>)

[Method]add-child
Adds child to the children of self.

This function will acquire a reference on child that will only be released when calling
clutter-actor-remove-child.

This function will take into consideration the <"depth"> of child, and will keep the
list of children sorted.

This function will emit the <"actor-added"> signal on self.

self a <clutter-actor>

child a <clutter-actor>

Since 1.10

[Function]clutter-actor-insert-child-above (self <clutter-actor>)
(child <clutter-actor>) (sibling <clutter-actor>)

[Method]insert-child-above
Inserts child into the list of children of self, above another child of self or, if sibling
is ‘#f’, above all the children of self.

This function will acquire a reference on child that will only be released when calling
clutter-actor-remove-child.

This function will not take into consideration the <"depth"> of child.

This function will emit the <"actor-added"> signal on self.

self a <clutter-actor>

child a <clutter-actor>

sibling a child of self, or ‘#f’.

Since 1.10

Chapter 4: ClutterActor 40

[Function]clutter-actor-insert-child-at-index (self <clutter-actor>)
(child <clutter-actor>) (index int)

[Method]insert-child-at-index
Inserts child into the list of children of self, using the given index. If index is greater
than the number of children in self, or is less than 0, then the new child is added at
the end.

This function will acquire a reference on child that will only be released when calling
clutter-actor-remove-child.

This function will not take into consideration the <"depth"> of child.

This function will emit the <"actor-added"> signal on self.

self a <clutter-actor>

child a <clutter-actor>

index the index

Since 1.10

[Function]clutter-actor-insert-child-below (self <clutter-actor>)
(child <clutter-actor>) (sibling <clutter-actor>)

[Method]insert-child-below
Inserts child into the list of children of self, below another child of self or, if sibling
is ‘#f’, below all the children of self.

This function will acquire a reference on child that will only be released when calling
clutter-actor-remove-child.

This function will not take into consideration the <"depth"> of child.

This function will emit the <"actor-added"> signal on self.

self a <clutter-actor>

child a <clutter-actor>

sibling a child of self, or ‘#f’.

Since 1.10

[Function]clutter-actor-replace-child (self <clutter-actor>)
(old child <clutter-actor>) (new child <clutter-actor>)

[Method]replace-child
Replaces old-child with new-child in the list of children of self.

self a <clutter-actor>

old-child the child of self to replace

new-child the <clutter-actor> to replace old-child

Since 1.10

[Function]clutter-actor-remove-child (self <clutter-actor>)
(child <clutter-actor>)

[Method]remove-child
Removes child from the children of self.

Chapter 4: ClutterActor 41

This function will release the reference added by clutter-actor-add-child, so if
you want to keep using child you will have to acquire a referenced on it before calling
this function.

This function will emit the <"actor-removed"> signal on self.

self a <clutter-actor>

child a <clutter-actor>

Since 1.10

[Function]clutter-actor-remove-all-children (self <clutter-actor>)
[Method]remove-all-children

Removes all children of self.

This function releases the reference added by inserting a child actor in the list of
children of self.

If the reference count of a child drops to zero, the child will be destroyed. If you want
to ensure the destruction of all the children of self, use clutter-actor-destroy-

all-children.

self a <clutter-actor>

Since 1.10

[Function]clutter-actor-destroy-all-children (self <clutter-actor>)
[Method]destroy-all-children

Destroys all children of self.

This function releases the reference added by inserting a child actor in the list of
children of self, and ensures that the <"destroy"> signal is emitted on each child of
the actor.

By default, <clutter-actor> will emit the <"destroy"> signal when its reference
count drops to 0; the default handler of the <"destroy"> signal will destroy all the
children of an actor. This function ensures that all children are destroyed, instead
of just removed from self, unlike clutter-actor-remove-all-children which will
merely release the reference and remove each child.

Unless you acquired an additional reference on each child of self prior to calling
clutter-actor-remove-all-children and want to reuse the actors, you should use
clutter-actor-destroy-all-children in order to make sure that children are de-
stroyed and signal handlers are disconnected even in cases where circular references
prevent this from automatically happening through reference counting alone.

self a <clutter-actor>

Since 1.10

[Function]clutter-actor-get-first-child (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-first-child
Retrieves the first child of self.

The returned pointer is only valid until the scene graph changes; it is not safe to
modify the list of children of self while iterating it.

Chapter 4: ClutterActor 42

self a <clutter-actor>

ret a pointer to a <clutter-actor>, or ‘#f’.

Since 1.10

[Function]clutter-actor-get-next-sibling (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-next-sibling
Retrieves the sibling of self that comes after it in the list of children of self ’s parent.

The returned pointer is only valid until the scene graph changes; it is not safe to
modify the list of children of self while iterating it.

self a <clutter-actor>

ret a pointer to a <clutter-actor>, or ‘#f’.

Since 1.10

[Function]clutter-actor-get-previous-sibling (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-previous-sibling
Retrieves the sibling of self that comes before it in the list of children of self ’s parent.

The returned pointer is only valid until the scene graph changes; it is not safe to
modify the list of children of self while iterating it.

self a <clutter-actor>

ret a pointer to a <clutter-actor>, or ‘#f’.

Since 1.10

[Function]clutter-actor-get-last-child (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-last-child
Retrieves the last child of self.

The returned pointer is only valid until the scene graph changes; it is not safe to
modify the list of children of self while iterating it.

self a <clutter-actor>

ret a pointer to a <clutter-actor>, or ‘#f’.

Since 1.10

[Function]clutter-actor-get-child-at-index (self <clutter-actor>)
(index int) ⇒ (ret <clutter-actor>)

[Method]get-child-at-index
Retrieves the actor at the given index inside the list of children of self.

self a <clutter-actor>

index the position in the list of children

ret a pointer to a <clutter-actor>, or ‘#f’.

Since 1.10

Chapter 4: ClutterActor 43

[Function]clutter-actor-get-children (self <clutter-actor>)
⇒ (ret glist-of)

[Method]get-children
Retrieves the list of children of self.

self a <clutter-actor>

ret A newly allocated <g-list> of <clutter-actor>s. Use g-list-free

when done.

Since 1.10

[Function]clutter-actor-get-n-children (self <clutter-actor>)
⇒ (ret int)

[Method]get-n-children
Retrieves the number of children of self.

self a <clutter-actor>

ret the number of children of an actor

Since 1.10

[Function]clutter-actor-get-parent (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-parent
Retrieves the parent of self.

self A <clutter-actor>

ret The <clutter-actor> parent, or ‘#f’ if no parent is set.

[Function]clutter-actor-set-child-at-index (self <clutter-actor>)
(child <clutter-actor>) (index int)

[Method]set-child-at-index
Changes the index of child in the list of children of self.

This function is logically equivalent to removing child and calling clutter-actor-

insert-child-at-index, but it will not emit signals or change state on child.

self a <clutter-actor>

child a <clutter-actor> child of self

index the new index for child

Since 1.10

[Function]clutter-actor-contains (self <clutter-actor>)
(descendant <clutter-actor>) ⇒ (ret bool)

[Method]contains
Determines if descendant is contained inside self (either as an immediate child, or as
a deeper descendant). If self and descendant point to the same actor then it will also
return ‘#t’.

self A <clutter-actor>

Chapter 4: ClutterActor 44

descendant
A <clutter-actor>, possibly contained in self

ret whether descendent is contained within self

Since 1.4

[Function]clutter-actor-get-stage (self <clutter-actor>)
⇒ (ret <clutter-actor>)

[Method]get-stage
Retrieves the <clutter-stage> where actor is contained.

actor a <clutter-actor>

ret the stage containing the actor, or ‘#f’.

Since 0.8

[Function]clutter-actor-save-easing-state (self <clutter-actor>)
[Method]save-easing-state

Saves the current easing state for animatable properties, and creates a new state with
the default values for easing mode and duration.

self a <clutter-actor>

Since 1.10

[Function]clutter-actor-restore-easing-state (self <clutter-actor>)
[Method]restore-easing-state

Restores the easing state as it was prior to a call to clutter-actor-save-easing-

state.

self a <clutter-actor>

Since 1.10

[Function]clutter-actor-set-easing-duration (self <clutter-actor>)
(msecs unsigned-int)

[Method]set-easing-duration
Sets the duration of the tweening for animatable properties of self for the current
easing state.

self a <clutter-actor>

msecs the duration of the easing, or ‘#f’

Since 1.10

[Function]clutter-actor-get-easing-duration (self <clutter-actor>)
⇒ (ret unsigned-int)

[Method]get-easing-duration
Retrieves the duration of the tweening for animatable properties of self for the current
easing state.

self a <clutter-actor>

ret the duration of the tweening, in milliseconds

Since 1.10

Chapter 4: ClutterActor 45

[Function]clutter-actor-set-easing-mode (self <clutter-actor>)
(mode <clutter-animation-mode>)

[Method]set-easing-mode
Sets the easing mode for the tweening of animatable properties of self.

self a <clutter-actor>

mode an easing mode, excluding ‘CLUTTER_CUSTOM_MODE’

Since 1.10

[Function]clutter-actor-get-easing-mode (self <clutter-actor>)
⇒ (ret <clutter-animation-mode>)

[Method]get-easing-mode
Retrieves the easing mode for the tweening of animatable properties of self for the
current easing state.

self a <clutter-actor>

ret an easing mode

Since 1.10

[Function]clutter-actor-set-easing-delay (self <clutter-actor>)
(msecs unsigned-int)

[Method]set-easing-delay
Sets the delay that should be applied before tweening animatable properties.

self a <clutter-actor>

msecs the delay before the start of the tweening, in milliseconds

Since 1.10

[Function]clutter-actor-get-easing-delay (self <clutter-actor>)
⇒ (ret unsigned-int)

[Method]get-easing-delay
Retrieves the delay that should be applied when tweening animatable properties.

self a <clutter-actor>

ret a delay, in milliseconds

Since 1.10

[Function]clutter-actor-get-transition (self <clutter-actor>)
(name mchars) ⇒ (ret <clutter-transition>)

[Method]get-transition
Retrieves the <clutter-transition> of a <clutter-actor> by using the transition
name.

Transitions created for animatable properties use the name of the property itself, for
instance the code below:

Chapter 4: ClutterActor 46

clutter_actor_set_easing_duration (actor, 1000);

clutter_actor_set_rotation (actor, CLUTTER_Y_AXIS, 360.0, x, y, z);

transition = clutter_actor_get_transition (actor, "rotation-angle-y");

g_signal_connect (transition, "completed",

G_CALLBACK (on_transition_complete),

actor);

will call the on-transition-complete callback when the transition is complete.

self a <clutter-actor>

name the name of the transition

ret a <clutter-transition>, or ‘#f’ is none was found to match the passed
name; the returned instance is owned by Clutter and it should not be
freed.

Since 1.10

[Function]clutter-actor-add-transition (self <clutter-actor>)
(name mchars) (transition <clutter-transition>)

[Method]add-transition
Adds a transition to the <clutter-actor>’s list of animations.

The name string is a per-actor unique identifier of the transition: only one <clutter-
transition> can be associated to the specified name.

The transition will be given the easing duration, mode, and delay associated to the
actor’s current easing state; it is possible to modify these values after calling clutter-
actor-add-transition.

The transition will be started once added.

This function will take a reference on the transition.

This function is usually called implicitly when modifying an animatable property.

self a <clutter-actor>

name the name of the transition to add

transition the <clutter-transition> to add

Since 1.10

[Function]clutter-actor-remove-transition (self <clutter-actor>)
(name mchars)

[Method]remove-transition
Removes the transition stored inside a <clutter-actor> using name identifier.

If the transition is currently in progress, it will be stopped.

This function releases the reference acquired when the transition was added to the
<clutter-actor>.

self a <clutter-actor>

name the name of the transition to remove

Since 1.10

Chapter 4: ClutterActor 47

[Function]clutter-actor-set-reactive (self <clutter-actor>)
(reactive bool)

[Method]set-reactive
Sets actor as reactive. Reactive actors will receive events.

actor a <clutter-actor>

reactive whether the actor should be reactive to events

Since 0.6

[Function]clutter-actor-get-reactive (self <clutter-actor>) ⇒ (ret bool)
[Method]get-reactive

Checks whether actor is marked as reactive.

actor a <clutter-actor>

ret ‘#t’ if the actor is reactive

Since 0.6

[Function]clutter-actor-has-key-focus (self <clutter-actor>)
⇒ (ret bool)

[Method]has-key-focus
Checks whether self is the <clutter-actor> that has key focus

self a <clutter-actor>

ret ‘#t’ if the actor has key focus, and ‘#f’ otherwise

Since 1.4

[Function]clutter-actor-grab-key-focus (self <clutter-actor>)
[Method]grab-key-focus

Sets the key focus of the <clutter-stage> including self to this <clutter-actor>.

self a <clutter-actor>

Since 1.0

[Function]clutter-actor-has-pointer (self <clutter-actor>) ⇒ (ret bool)
[Method]has-pointer

Checks whether an actor contains the pointer of a <clutter-input-device>

self a <clutter-actor>

ret ‘#t’ if the actor contains the pointer, and ‘#f’ otherwise

Since 1.2

[Function]clutter-actor-get-pango-context (self <clutter-actor>)
⇒ (ret <pango-context>)

[Method]get-pango-context
Retrieves the <pango-context> for self. The actor’s <pango-context> is already
configured using the appropriate font map, resolution and font options.

Chapter 4: ClutterActor 48

Unlike clutter-actor-create-pango-context, this context is owend by the
<clutter-actor> and it will be updated each time the options stored by the
<clutter-backend> change.

You can use the returned <pango-context> to create a <pango-layout> and render
text using cogl-pango-render-layout to reuse the glyphs cache also used by Clutter.

self a <clutter-actor>

ret the <pango-context> for a <clutter-actor>. The returned <pango-

context> is owned by the actor and should not be unreferenced by the
application code.

Since 1.0

[Function]clutter-actor-create-pango-context (self <clutter-actor>)
⇒ (ret <pango-context>)

[Method]create-pango-context
Creates a <pango-context> for the given actor. The <pango-context> is already
configured using the appropriate font map, resolution and font options.

See also clutter-actor-get-pango-context.

self a <clutter-actor>

ret the newly created <pango-context>. Use g-object-unref on the re-
turned value to deallocate its resources.

Since 1.0

[Function]clutter-actor-create-pango-layout (self <clutter-actor>)
(text mchars) ⇒ (ret <pango-layout>)

[Method]create-pango-layout
Creates a new <pango-layout> from the same <pango-context> used by the
<clutter-actor>. The <pango-layout> is already configured with the font map,
resolution and font options, and the given text.

If you want to keep around a <pango-layout> created by this function you will have
to connect to the <"font-changed"> and <"resolution-changed"> signals, and call
pango-layout-context-changed in response to them.

self a <clutter-actor>

text (allow-none) the text to set on the <pango-layout>, or ‘#f’

ret the newly created <pango-layout>. Use g-object-unref when done.

Since 1.0

[Function]clutter-actor-set-text-direction (self <clutter-actor>)
(text dir <clutter-text-direction>)

[Method]set-text-direction
Sets the <clutter-text-direction> for an actor

The passed text direction must not be ‘CLUTTER_TEXT_DIRECTION_DEFAULT’

If self implements <clutter-container> then this function will recurse inside all the
children of self (including the internal ones).

Chapter 4: ClutterActor 49

Composite actors not implementing <clutter-container>, or actors requiring spe-
cial handling when the text direction changes, should connect to the <"notify">

signal for the <"text-direction"> property

self a <clutter-actor>

text-dir the text direction for self

Since 1.2

[Function]clutter-actor-get-text-direction (self <clutter-actor>)
⇒ (ret <clutter-text-direction>)

[Method]get-text-direction
Retrieves the value set using clutter-actor-set-text-direction

If no text direction has been previously set, the default text direction, as returned by
clutter-get-default-text-direction, will be returned instead

self a <clutter-actor>

ret the <clutter-text-direction> for the actor

Since 1.2

[Function]clutter-actor-get-accessible (self <clutter-actor>)
⇒ (ret <atk-object>)

[Method]get-accessible
Returns the accessible object that describes the actor to an assistive technology.

If no class-specific <atk-object> implementation is available for the actor instance
in question, it will inherit an <atk-object> implementation from the first ancestor
class for which such an implementation is defined.

The documentation of the ATK library contains more information about accessible
objects and their uses.

self a <clutter-actor>

ret the <atk-object> associated with actor.

[Function]clutter-actor-add-action (self <clutter-actor>)
(action <clutter-action>)

[Method]add-action
Adds action to the list of actions applied to self

A <clutter-action> can only belong to one actor at a time

The <clutter-actor> will hold a reference on action until either clutter-actor-

remove-action or clutter-actor-clear-actions is called

self a <clutter-actor>

action a <clutter-action>

Since 1.4

http://developer.gnome.org/doc/API/2.0/atk/index.html

Chapter 4: ClutterActor 50

[Function]clutter-actor-add-action-with-name (self <clutter-actor>)
(name mchars) (action <clutter-action>)

[Method]add-action-with-name
A convenience function for setting the name of a <clutter-action> while adding it
to the list of actions applied to self

This function is the logical equivalent of:

clutter_actor_meta_set_name (CLUTTER_ACTOR_META (action), name);

clutter_actor_add_action (self, action);

self a <clutter-actor>

name the name to set on the action

action a <clutter-action>

Since 1.4

[Function]clutter-actor-remove-action (self <clutter-actor>)
(action <clutter-action>)

[Method]remove-action
Removes action from the list of actions applied to self

The reference held by self on the <clutter-action> will be released

self a <clutter-actor>

action a <clutter-action>

Since 1.4

[Function]clutter-actor-remove-action-by-name (self <clutter-actor>)
(name mchars)

[Method]remove-action-by-name
Removes the <clutter-action> with the given name from the list of actions applied
to self

self a <clutter-actor>

name the name of the action to remove

Since 1.4

[Function]clutter-actor-has-actions (self <clutter-actor>) ⇒ (ret bool)
[Method]has-actions

Returns whether the actor has any actions applied.

self A <clutter-actor>

ret ‘#t’ if the actor has any actions, ‘#f’ otherwise

Since 1.10

[Function]clutter-actor-get-actions (self <clutter-actor>)
⇒ (ret glist-of)

[Method]get-actions
Retrieves the list of actions applied to self

Chapter 4: ClutterActor 51

self a <clutter-actor>

ret a copy of the list of <clutter-action>s. The contents of the list are
owned by the <clutter-actor>. Use g-list-free to free the resources
allocated by the returned <g-list>.

Since 1.4

[Function]clutter-actor-get-action (self <clutter-actor>) (name mchars)
⇒ (ret <clutter-action>)

[Method]get-action
Retrieves the <clutter-action> with the given name in the list of actions applied
to self

self a <clutter-actor>

name the name of the action to retrieve

ret a <clutter-action> for the given name, or ‘#f’. The returned
<clutter-action> is owned by the actor and it should not be
unreferenced directly.

Since 1.4

[Function]clutter-actor-clear-actions (self <clutter-actor>)
[Method]clear-actions

Clears the list of actions applied to self

self a <clutter-actor>

Since 1.4

[Function]clutter-actor-add-constraint (self <clutter-actor>)
(constraint <clutter-constraint>)

[Method]add-constraint
Adds constraint to the list of <clutter-constraint>s applied to self

The <clutter-actor> will hold a reference on the constraint until either clutter-
actor-remove-constraint or clutter-actor-clear-constraints is called.

self a <clutter-actor>

constraint a <clutter-constraint>

Since 1.4

[Function]clutter-actor-remove-constraint (self <clutter-actor>)
(constraint <clutter-constraint>)

[Method]remove-constraint
Removes constraint from the list of constraints applied to self

The reference held by self on the <clutter-constraint> will be released

self a <clutter-actor>

constraint a <clutter-constraint>

Since 1.4

Chapter 4: ClutterActor 52

[Function]clutter-actor-has-constraints (self <clutter-actor>)
⇒ (ret bool)

[Method]has-constraints
Returns whether the actor has any constraints applied.

self A <clutter-actor>

ret ‘#t’ if the actor has any constraints, ‘#f’ otherwise

Since 1.10

[Function]clutter-actor-get-constraints (self <clutter-actor>)
⇒ (ret glist-of)

[Method]get-constraints
Retrieves the list of constraints applied to self

self a <clutter-actor>

ret a copy of the list of <clutter-constraint>s. The contents of the list are
owned by the <clutter-actor>. Use g-list-free to free the resources
allocated by the returned <g-list>.

Since 1.4

[Function]clutter-actor-get-constraint (self <clutter-actor>)
(name mchars) ⇒ (ret <clutter-constraint>)

[Method]get-constraint
Retrieves the <clutter-constraint> with the given name in the list of constraints
applied to self

self a <clutter-actor>

name the name of the constraint to retrieve

ret a <clutter-constraint> for the given name, or ‘#f’. The returned
<clutter-constraint> is owned by the actor and it should not be un-
referenced directly.

Since 1.4

[Function]clutter-actor-clear-constraints (self <clutter-actor>)
[Method]clear-constraints

Clears the list of constraints applied to self

self a <clutter-actor>

Since 1.4

[Function]clutter-actor-add-effect (self <clutter-actor>)
(effect <clutter-effect>)

[Method]add-effect
Adds effect to the list of <clutter-effect>s applied to self

The <clutter-actor> will hold a reference on the effect until either clutter-actor-
remove-effect or clutter-actor-clear-effects is called.

Chapter 4: ClutterActor 53

self a <clutter-actor>

effect a <clutter-effect>

Since 1.4

[Function]clutter-actor-add-effect-with-name (self <clutter-actor>)
(name mchars) (effect <clutter-effect>)

[Method]add-effect-with-name
A convenience function for setting the name of a <clutter-effect> while adding it
to the list of effectss applied to self

This function is the logical equivalent of:

clutter_actor_meta_set_name (CLUTTER_ACTOR_META (effect), name);

clutter_actor_add_effect (self, effect);

self a <clutter-actor>

name the name to set on the effect

effect a <clutter-effect>

Since 1.4

[Function]clutter-actor-remove-effect (self <clutter-actor>)
(effect <clutter-effect>)

[Method]remove-effect
Removes effect from the list of effects applied to self

The reference held by self on the <clutter-effect> will be released

self a <clutter-actor>

effect a <clutter-effect>

Since 1.4

[Function]clutter-actor-remove-effect-by-name (self <clutter-actor>)
(name mchars)

[Method]remove-effect-by-name
Removes the <clutter-effect> with the given name from the list of effects applied
to self

self a <clutter-actor>

name the name of the effect to remove

Since 1.4

[Function]clutter-actor-has-effects (self <clutter-actor>) ⇒ (ret bool)
[Method]has-effects

Returns whether the actor has any effects applied.

self A <clutter-actor>

ret ‘#t’ if the actor has any effects, ‘#f’ otherwise

Since 1.10

Chapter 4: ClutterActor 54

[Function]clutter-actor-get-effects (self <clutter-actor>)
⇒ (ret glist-of)

[Method]get-effects
Retrieves the <clutter-effect>s applied on self, if any

self a <clutter-actor>

ret a list of <clutter-effect>s, or ‘#f’. The elements of the returned list
are owned by Clutter and they should not be freed. You should free the
returned list using g-list-free when done.

Since 1.4

[Function]clutter-actor-get-effect (self <clutter-actor>) (name mchars)
⇒ (ret <clutter-effect>)

[Method]get-effect
Retrieves the <clutter-effect> with the given name in the list of effects applied to
self

self a <clutter-actor>

name the name of the effect to retrieve

ret a <clutter-effect> for the given name, or ‘#f’. The returned
<clutter-effect> is owned by the actor and it should not be
unreferenced directly.

Since 1.4

[Function]clutter-actor-clear-effects (self <clutter-actor>)
[Method]clear-effects

Clears the list of effects applied to self

self a <clutter-actor>

Since 1.4

[Function]clutter-actor-box-new (x 1 float) (y 1 float) (x 2 float)
(y 2 float) ⇒ (ret <clutter-actor-box>)

Allocates a new <clutter-actor-box> using the passed coordinates for the top left
and bottom right points

x-1 X coordinate of the top left point

y-1 Y coordinate of the top left point

x-2 X coordinate of the bottom right point

y-2 Y coordinate of the bottom right point

ret the newly allocated <clutter-actor-box>. Use clutter-actor-box-

free to free the resources

Since 1.0

Chapter 4: ClutterActor 55

[Function]clutter-actor-box-init (self <clutter-actor-box>) (x 1 float)
(y 1 float) (x 2 float) (y 2 float)

Initializes box with the given coordinates.

box a <clutter-actor-box>

x-1 X coordinate of the top left point

y-1 Y coordinate of the top left point

x-2 X coordinate of the bottom right point

y-2 Y coordinate of the bottom right point

Since 1.10

[Function]clutter-actor-box-init-rect (self <clutter-actor-box>)
(x float) (y float) (width float) (height float)

Initializes box with the given origin and size.

box a <clutter-actor-box>

x X coordinate of the origin

y Y coordinate of the origin

width width of the box

height height of the box

Since 1.10

[Function]clutter-actor-box-equal (self <clutter-actor-box>)
(box b <clutter-actor-box>) ⇒ (ret bool)

Checks box-a and box-b for equality

box-a a <clutter-actor-box>

box-b a <clutter-actor-box>

ret ‘#t’ if the passed <clutter-actor-box> are equal

Since 1.0

[Function]clutter-actor-box-get-x (self <clutter-actor-box>)
⇒ (ret float)

Retrieves the X coordinate of the origin of box

box a <clutter-actor-box>

ret the X coordinate of the origin

Since 1.0

[Function]clutter-actor-box-get-y (self <clutter-actor-box>)
⇒ (ret float)

Retrieves the Y coordinate of the origin of box

box a <clutter-actor-box>

ret the Y coordinate of the origin

Since 1.0

Chapter 4: ClutterActor 56

[Function]clutter-actor-box-get-width (self <clutter-actor-box>)
⇒ (ret float)

Retrieves the width of the box

box a <clutter-actor-box>

ret the width of the box

Since 1.0

[Function]clutter-actor-box-get-height (self <clutter-actor-box>)
⇒ (ret float)

Retrieves the height of the box

box a <clutter-actor-box>

ret the height of the box

Since 1.0

[Function]clutter-actor-box-set-origin (self <clutter-actor-box>)
(x float) (y float)

Changes the origin of box, maintaining the size of the <clutter-actor-box>.

box a <clutter-actor-box>

x the X coordinate of the new origin

y the Y coordinate of the new origin

Since 1.6

[Function]clutter-actor-box-get-origin (self <clutter-actor-box>)
⇒ (x float) (y float)

Retrieves the origin of box

box a <clutter-actor-box>

x return location for the X coordinate, or ‘#f’.

y return location for the Y coordinate, or ‘#f’.

Since 1.0

[Function]clutter-actor-box-set-size (self <clutter-actor-box>)
(width float) (height float)

Sets the size of box, maintaining the origin of the <clutter-actor-box>.

box a <clutter-actor-box>

width the new width

height the new height

Since 1.6

Chapter 4: ClutterActor 57

[Function]clutter-actor-box-get-size (self <clutter-actor-box>)
⇒ (width float) (height float)

Retrieves the size of box

box a <clutter-actor-box>

width return location for the width, or ‘#f’.

height return location for the height, or ‘#f’.

Since 1.0

[Function]clutter-actor-box-get-area (self <clutter-actor-box>)
⇒ (ret float)

Retrieves the area of box

box a <clutter-actor-box>

ret the area of a <clutter-actor-box>, in pixels

Since 1.0

[Function]clutter-actor-box-contains (self <clutter-actor-box>)
(x float) (y float) ⇒ (ret bool)

Checks whether a point with x, y coordinates is contained withing box

box a <clutter-actor-box>

x X coordinate of the point

y Y coordinate of the point

ret ‘#t’ if the point is contained by the <clutter-actor-box>

Since 1.0

[Function]clutter-actor-box-clamp-to-pixel (self <clutter-actor-box>)
Clamps the components of box to the nearest integer

box the <clutter-actor-box> to clamp.

Since 1.2

[Function]clutter-actor-box-interpolate (self <clutter-actor-box>)
(final <clutter-actor-box>) (progress double)
(result <clutter-actor-box>)

Interpolates between initial and final<clutter-actor-box>es using progress

initial the initial <clutter-actor-box>

final the final <clutter-actor-box>

progress the interpolation progress

result return location for the interpolation.

Since 1.2

Chapter 4: ClutterActor 58

[Function]clutter-actor-box-union (self <clutter-actor-box>)
(b <clutter-actor-box>) (result <clutter-actor-box>)

Unions the two boxes a and b and stores the result in result.

a (in) the first <clutter-actor-box>

b the second <clutter-actor-box>.

result the <clutter-actor-box> representing a union of a and b.

Since 1.4

[Function]clutter-vertex-new (x float) (y float) (z float)
⇒ (ret <clutter-vertex>)

Creates a new <clutter-vertex> for the point in 3D space identified by the 3 coor-
dinates x, y, z

x X coordinate

y Y coordinate

z Z coordinate

ret the newly allocate <clutter-vertex>. Use clutter-vertex-free to
free the resources

Since 1.0

[Function]clutter-vertex-init (self <clutter-vertex>) (x float) (y float)
(z float)

Initializes vertex with the given coordinates.

vertex a <clutter-vertex>

x X coordinate

y Y coordinate

z Z coordinate

Since 1.10

[Function]clutter-vertex-equal (self <clutter-vertex>)
(vertex b <clutter-vertex>) ⇒ (ret bool)

Compares vertex-a and vertex-b for equality

vertex-a a <clutter-vertex>

vertex-b a <clutter-vertex>

ret ‘#t’ if the passed <clutter-vertex> are equal

Since 1.0

[Function]clutter-geometry-union (self <clutter-geometry>)
(geometry b <clutter-geometry>) (result <clutter-geometry>)

Find the union of two rectangles represented as <clutter-geometry>.

Chapter 4: ClutterActor 59

geometry-a
a <clutter-geometry>

geometry-b
another <clutter-geometry>

result location to store the result.

Since 1.4

[Function]clutter-geometry-intersects (self <clutter-geometry>)
(geometry1 <clutter-geometry>) ⇒ (ret bool)

Determines if geometry0 and geometry1 intersect returning ‘#t’ if they do else ‘#f’.

geometry0 The first geometry to test

geometry1 The second geometry to test

ret ‘#t’ of geometry0 and geometry1 intersect else ‘#f’.

Since 1.4

[Function]clutter-paint-volume-set-origin (self <clutter-paint-volume>)
(origin <clutter-vertex>)

Sets the origin of the paint volume.

The origin is defined as the X, Y and Z coordinates of the top-left corner of an actor’s
paint volume, in actor coordinates.

The default is origin is assumed at: (0, 0, 0)

pv a <clutter-paint-volume>

origin a <clutter-vertex>

Since 1.6

[Function]clutter-paint-volume-get-origin (self <clutter-paint-volume>)
(vertex <clutter-vertex>)

Retrieves the origin of the <clutter-paint-volume>.

pv a <clutter-paint-volume>

vertex the return location for a <clutter-vertex>.

Since 1.6

[Function]clutter-paint-volume-set-width (self <clutter-paint-volume>)
(width float)

Sets the width of the paint volume. The width is measured along the x axis in the
actor coordinates that pv is associated with.

pv a <clutter-paint-volume>

width the width of the paint volume, in pixels

Since 1.6

Chapter 4: ClutterActor 60

[Function]clutter-paint-volume-get-width (self <clutter-paint-volume>)
⇒ (ret float)

Retrieves the width of the volume’s, axis aligned, bounding box.

In other words; this takes into account what actor’s coordinate space pv belongs too
and conceptually fits an axis aligned box around the volume. It returns the size of
that bounding box as measured along the x-axis.

If, for example, clutter-actor-get-transformed-paint-volume is used to trans-
form a 2D child actor that is 100px wide, 100px high and 0px deep into container
coordinates then the width might not simply be 100px if the child actor has a 3D
rotation applied to it.

Remember; after clutter-actor-get-transformed-paint-volume is used then a
transformed child volume will be defined relative to the ancestor container actor and
so a 2D child actor can have a 3D bounding volume.� �
There are no accuracy guarantees for the reported width, except that it must always
be >= to the true width. This is because actors may report simple, loose fitting
paint-volumes for efficiency
 	
pv a <clutter-paint-volume>

ret the width, in units of pv ’s local coordinate system.

Since 1.6

[Function]clutter-paint-volume-set-height (self <clutter-paint-volume>)
(height float)

Sets the height of the paint volume. The height is measured along the y axis in the
actor coordinates that pv is associated with.

pv a <clutter-paint-volume>

height the height of the paint volume, in pixels

Since 1.6

[Function]clutter-paint-volume-get-height (self <clutter-paint-volume>)
⇒ (ret float)

Retrieves the height of the volume’s, axis aligned, bounding box.

In other words; this takes into account what actor’s coordinate space pv belongs too
and conceptually fits an axis aligned box around the volume. It returns the size of
that bounding box as measured along the y-axis.

If, for example, clutter-actor-get-transformed-paint-volume is used to trans-
form a 2D child actor that is 100px wide, 100px high and 0px deep into container
coordinates then the height might not simply be 100px if the child actor has a 3D
rotation applied to it.

Remember; after clutter-actor-get-transformed-paint-volume is used then a
transformed child volume will be defined relative to the ancestor container actor and
so a 2D child actor can have a 3D bounding volume.

Chapter 4: ClutterActor 61

� �
There are no accuracy guarantees for the reported height, except that it must always
be >= to the true height. This is because actors may report simple, loose fitting
paint-volumes for efficiency
 	
pv a <clutter-paint-volume>

ret the height, in units of pv ’s local coordinate system.

Since 1.6

[Function]clutter-paint-volume-set-depth (self <clutter-paint-volume>)
(depth float)

Sets the depth of the paint volume. The depth is measured along the z axis in the
actor coordinates that pv is associated with.

pv a <clutter-paint-volume>

depth the depth of the paint volume, in pixels

Since 1.6

[Function]clutter-paint-volume-get-depth (self <clutter-paint-volume>)
⇒ (ret float)

Retrieves the depth of the volume’s, axis aligned, bounding box.

In other words; this takes into account what actor’s coordinate space pv belongs too
and conceptually fits an axis aligned box around the volume. It returns the size of
that bounding box as measured along the z-axis.

If, for example, clutter-actor-get-transformed-paint-volume is used to trans-
form a 2D child actor that is 100px wide, 100px high and 0px deep into container
coordinates then the depth might not simply be 0px if the child actor has a 3D
rotation applied to it.

Remember; after clutter-actor-get-transformed-paint-volume is used then the
transformed volume will be defined relative to the container actor and in container
coordinates a 2D child actor can have a 3D bounding volume.� �
There are no accuracy guarantees for the reported depth, except that it must always
be >= to the true depth. This is because actors may report simple, loose fitting
paint-volumes for efficiency.
 	
pv a <clutter-paint-volume>

ret the depth, in units of pv ’s local coordinate system.

Since 1.6

[Function]clutter-paint-volume-union (self <clutter-paint-volume>)
(another pv <clutter-paint-volume>)

Updates the geometry of pv to encompass pv and another-pv.� �
There are no guarantees about how precisely the two volumes will be encompassed.
 	

Chapter 4: ClutterActor 62

pv The first <clutter-paint-volume> and destination for resulting union

another-pv
A second <clutter-paint-volume> to union with pv

Since 1.6

[Function]clutter-paint-volume-union-box (self <clutter-paint-volume>)
(box <clutter-actor-box>)

Unions the 2D region represented by box to a <clutter-paint-volume>.

This function is similar to clutter-paint-volume-union, but it is specific for 2D
regions.

pv a <clutter-paint-volume>

box a <clutter-actor-box> to union to pv

Since 1.10

Chapter 5: ClutterAlignConstraint 63

5 ClutterAlignConstraint

A constraint aligning the position of an actor

5.1 Overview

<clutter-align-constraint> is a <clutter-constraint> that aligns the position of the
<clutter-actor> to which it is applied to the size of another <clutter-actor> using an
alignment factor

<clutter-align-constraint> is available since Clutter 1.4

5.2 Usage

[Function]clutter-align-constraint-new (source <clutter-actor>)
(axis <clutter-align-axis>) (factor float)
⇒ (ret <clutter-constraint>)

Creates a new constraint, aligning a <clutter-actor>’s position with regards of the
size of the actor to source, with the given alignment factor

source the <clutter-actor> to use as the source of the alignment, or ‘#f’.

axis the axis to be used to compute the alignment

factor the alignment factor, between 0.0 and 1.0

ret the newly created <clutter-align-constraint>

Since 1.4

[Function]clutter-align-constraint-set-source
(self <clutter-align-constraint>) (source <clutter-actor>)

[Method]set-source
Sets the source of the alignment constraint

align a <clutter-align-constraint>

source a <clutter-actor>, or ‘#f’ to unset the source.

Since 1.4

[Function]clutter-align-constraint-get-source
(self <clutter-align-constraint>) ⇒ (ret <clutter-actor>)

[Method]get-source
Retrieves the source of the alignment

align a <clutter-align-constraint>

ret the <clutter-actor> used as the source of the alignment.

Since 1.4

Chapter 5: ClutterAlignConstraint 64

[Function]clutter-align-constraint-set-factor
(self <clutter-align-constraint>) (factor float)

[Method]set-factor
Sets the alignment factor of the constraint

The factor depends on the <"align-axis"> property and it is a value between 0.0
(meaning left, when <"align-axis"> is set to ‘CLUTTER_ALIGN_X_AXIS’; or meaning
top, when <"align-axis"> is set to ‘CLUTTER_ALIGN_Y_AXIS’) and 1.0 (meaning
right, when <"align-axis"> is set to ‘CLUTTER_ALIGN_X_AXIS’; or meaning bottom,
when <"align-axis"> is set to ‘CLUTTER_ALIGN_Y_AXIS’). A value of 0.5 aligns in
the middle in either cases

align a <clutter-align-constraint>

factor the alignment factor, between 0.0 and 1.0

Since 1.4

[Function]clutter-align-constraint-get-factor
(self <clutter-align-constraint>) ⇒ (ret float)

[Method]get-factor
Retrieves the factor set using clutter-align-constraint-set-factor

align a <clutter-align-constraint>

ret the alignment factor

Since 1.4

Chapter 6: ClutterAlpha 65

6 ClutterAlpha

A class for calculating a value as a function of time

6.1 Overview

<clutter-alpha> is a class for calculating an floating point value dependent only on the
position of a <clutter-timeline>.

(code "<\"progress-mode\">") " property of " (code "<clutter-timeline>") ", or the\n"
(code "clutter-timeline-set-progress-func") " function instead of " (code "<clutter-alpha>")
".\nThe " (code "<clutter-alpha>") " class will be deprecated in the future, and will not\nbe
available any more in the next major version of Clutter.")

A <clutter-alpha> binds a <clutter-timeline> to a progress function which trans-
lates the time T into an adimensional factor alpha. The factor can then be used to drive a
<clutter-behaviour>, which will translate the alpha value into something meaningful for
a <clutter-actor>.

You should provide a <clutter-timeline> and bind it to the <clutter-alpha> instance
using clutter-alpha-set-timeline. You should also set an "animation mode", either by
using the <clutter-animation-mode> values that Clutter itself provides or by registering
custom functions using clutter-alpha-register-func.

Instead of a <clutter-animation-mode> you may provide a function returning the
alpha value depending on the progress of the timeline, using clutter-alpha-set-func or
clutter-alpha-set-closure. The alpha function will be executed each time a new frame
in the <clutter-timeline> is reached.

Since the alpha function is controlled by the timeline instance, you can pause, stop
or resume the <clutter-alpha> from calling the alpha function by using the appropriate
functions of the <clutter-timeline> object.

<clutter-alpha> is used to "drive" a <clutter-behaviour> instance, and it is inter-
nally used by the <clutter-animation> API.

(The missing figure, easing-modes

6.2 ClutterAlpha custom properties for <clutter-script>

<clutter-alpha> defines a custom "function" property for <clutter-script> which allows
to reference a custom alpha function available in the source code. Setting the "function"
property is equivalent to calling clutter-alpha-set-func with the specified function name.
No user data or <g-destroy-notify> is available to be passed.

The following JSON fragment defines a <clutter-alpha> using a <clutter-timeline>

with id "sine-timeline" and an alpha function called my-sine-alpha. The defined
<clutter-alpha> instance can be reused in multiple <clutter-behaviour> definitions or
for <clutter-animation> definitions.

{

"id" : "sine-alpha",

"timeline" : {

"id" : "sine-timeline",

Chapter 6: ClutterAlpha 66

"duration" : 500,

"loop" : true

},

"function" : "my_sine_alpha"

}

For the way to define the <"mode"> property inside a ClutterScript fragment, see the
corresponding section in <clutter-animation>.

6.3 Usage

[Function]clutter-alpha-new ⇒ (ret <clutter-alpha>)
Creates a new <clutter-alpha> instance. You must set a function to compute the
alpha value using clutter-alpha-set-func and bind a <clutter-timeline> object
to the <clutter-alpha> instance using clutter-alpha-set-timeline.

You should use the newly created <clutter-alpha> instance inside a <clutter-

behaviour> object.

ret the newly created empty <clutter-alpha> instance.

Since 0.2

[Function]clutter-alpha-set-timeline (self <clutter-alpha>)
(timeline <clutter-timeline>)

[Method]set-timeline
Binds alpha to timeline.

alpha A <clutter-alpha>

timeline A <clutter-timeline>

Since 0.2

[Function]clutter-alpha-get-timeline (self <clutter-alpha>)
⇒ (ret <clutter-timeline>)

[Method]get-timeline
Gets the <clutter-timeline> bound to alpha.

alpha A <clutter-alpha>

ret a <clutter-timeline> instance.

Since 0.2

[Function]clutter-alpha-set-mode (self <clutter-alpha>)
(mode <clutter-animation-mode>)

[Method]set-mode
Sets the progress function of alpha using the symbolic value of mode, as taken by the
<clutter-animation-mode> enumeration or using the value returned by clutter-

alpha-register-func.

alpha a <clutter-alpha>

Chapter 6: ClutterAlpha 67

mode a <clutter-animation-mode>

Since 1.0

[Function]clutter-alpha-get-mode (self <clutter-alpha>)
⇒ (ret <clutter-animation-mode>)

[Method]get-mode
Retrieves the <clutter-animation-mode> used by alpha.

alpha a <clutter-alpha>

ret the animation mode

Since 1.0

[Function]clutter-alpha-get-alpha (self <clutter-alpha>) ⇒ (ret double)
[Method]get-alpha

Query the current alpha value.

alpha A <clutter-alpha>

ret The current alpha value for the alpha

Since 0.2

[Function]clutter-alpha-set-closure (self <clutter-alpha>)
(closure <gclosure>)

[Method]set-closure
Sets the <gclosure> used to compute the alpha value at each frame of the <clutter-
timeline> bound to alpha.

alpha A <clutter-alpha>

closure A <gclosure>

Since 0.8

[Function]clutter-alpha-register-closure (closure <gclosure>)
⇒ (ret unsigned-long)

<gclosure> variant of clutter-alpha-register-func.

Registers a global alpha function and returns its logical id to be used by clutter-

alpha-set-mode or by <clutter-animation>.

The logical id is always greater than ‘CLUTTER_ANIMATION_LAST’.

Rename to: clutter alpha register func

closure a <gclosure>

ret the logical id of the alpha function

Since 1.0

Chapter 7: ClutterAnimatable 68

7 ClutterAnimatable

Interface for animatable classes

7.1 Overview

<clutter-animatable> is an interface that allows a <gobject> class to control how a
<clutter-animation> will animate a property.

Each <clutter-animatable> should implement the animate-property virtual function
of the interface to compute the animation state between two values of an interval depending
on a progress factor, expressed as a floating point value.

If a <clutter-animatable> is animated by a <clutter-animation> instance, the
<clutter-animation> will call clutter-animatable-animate-property passing the
name of the currently animated property; the initial and final values of the animation
interval; the progress factor. The <clutter-animatable> implementation should return
the computed value for the animated property.

<clutter-animatable> is available since Clutter 1.0

7.2 Usage

[Function]clutter-animatable-find-property (self <clutter-animatable>)
(property name mchars) ⇒ (ret <gparam>)

[Method]find-property
Finds the <gparam> for property-name

animatable
a <clutter-animatable>

property-name
the name of the animatable property to find

ret The <gparam> for the given property or ‘#f’.

Since 1.4

[Function]clutter-animatable-set-final-state
(self <clutter-animatable>) (property name mchars) (value <gvalue>)

[Method]set-final-state
Sets the current state of property-name to value

animatable
a <clutter-animatable>

property-name
the name of the animatable property to set

value the value of the animatable property to set

Since 1.4

Chapter 8: Implicit Animations 69

8 Implicit Animations

Simple implicit animations

8.1 Overview

<clutter-animation> is an object providing simple, implicit animations for <gobject>s.

<clutter-animation> instances will bind one or more <gobject> properties belong-
ing to a <gobject> to a <clutter-interval>, and will then use a <clutter-alpha> to
interpolate the property between the initial and final values of the interval.

The duration of the animation is set using clutter-animation-set-duration. The
easing mode of the animation is set using clutter-animation-set-mode.

If you want to control the animation you should retrieve the <clutter-timeline> us-
ing clutter-animation-get-timeline and then use <clutter-timeline> functions like
clutter-timeline-start, clutter-timeline-pause or clutter-timeline-stop.

A <clutter-animation> will emit the <"completed"> signal when the <clutter-

timeline> used by the animation is completed; unlike <clutter-timeline>, though, the
<"completed"> will not be emitted if <"loop"> is set to ‘#t’ - that is, a looping animation
never completes.

If your animation depends on user control you can force its completion using clutter-

animation-completed.

If the <gobject> instance bound to a <clutter-animation> implements the <clutter-
animatable> interface it is possible for that instance to control the way the initial and final
states are interpolated.

<clutter-animation>s are distinguished from <clutter-behaviour>s because the
former can only control <gobject> properties of a single <gobject> instance, while the
latter can control multiple properties using accessor functions inside the <clutter-

behaviour>alpha-notify virtual function, and can control multiple <clutter-actor>s
as well.

For convenience, it is possible to use the clutter-actor-animate function call which
will take care of setting up and tearing down a <clutter-animation> instance and animate
an actor between its current state and the specified final state.

8.2 Defining ClutterAnimationMode inside ClutterScript

When defining a <clutter-animation> inside a ClutterScript file or string the <"mode">

can be defined either using the <clutter-animation-mode> enumeration values through
their "nick" (the short string used inside <g-enum-value>), their numeric id, or using the
following strings:

Chapter 8: Implicit Animations 70

easeInCubic, easeOutCubic, easeInOutCubic
easeInQuart, easeOutQuart, easeInOutQuart
easeInQuint, easeOutQuint, easeInOutQuint
easeInSine, easeOutSine, easeInOutSine
easeInExpo, easeOutExpo, easeInOutExpo
easeInCirc, easeOutCirc, easeInOutCirc
easeInElastic, easeOutElastic, easeInOutElastic
easeInBack, easeOutBack, easeInOutBack
easeInBounce, easeOutBounce, easeInOutBounce

Corresponding to the quadratic easing modes

Corresponding to the cubic easing modes

Corresponding to the quartic easing modes

Corresponding to the quintic easing modes

Corresponding to the sine easing modes

Corresponding to the exponential easing modes

Corresponding to the circular easing modes

Corresponding to the overshooting elastic easing modes

Corresponding to the overshooting cubic easing modes

Corresponding to the bouncing easing modes

<clutter-animation> is available since Clutter 1.0

8.3 Usage

[Function]clutter-animation-new ⇒ (ret <clutter-animation>)
Creates a new <clutter-animation> instance. You should set the <gobject>

to be animated using clutter-animation-set-object, set the duration with
clutter-animation-set-duration and the easing mode using clutter-

animation-set-mode.

Use clutter-animation-bind or clutter-animation-bind-interval to define the
properties to be animated. The interval and the animated properties can be updated
at runtime.

The clutter-actor-animate and relative family of functions provide an easy way to
animate a <clutter-actor> and automatically manage the lifetime of a <clutter-

animation> instance, so you should consider using those functions instead of manually
creating an animation.

ret the newly created <clutter-animation>. Use g-object-unref to re-
lease the associated resources

Since 1.0

[Function]clutter-animation-set-object (self <clutter-animation>)
(object <gobject>)

[Method]set-object
Attaches animation to object. The <clutter-animation> will take a reference on
object.

Chapter 8: Implicit Animations 71

animation a <clutter-animation>

object a <gobject>

Since 1.0

[Function]clutter-animation-get-object (self <clutter-animation>)
⇒ (ret <gobject>)

[Method]get-object
Retrieves the <gobject> attached to animation.

animation a <clutter-animation>

ret a <gobject>.

Since 1.0

[Function]clutter-animation-set-mode (self <clutter-animation>)
(mode unsigned-long)

[Method]set-mode
Sets the animation mode of animation. The animation mode is a logical id, either
coming from the <clutter-animation-mode> enumeration or the return value of
clutter-alpha-register-func.

This function will also set <"alpha"> if needed.

animation a <clutter-animation>

mode an animation mode logical id

Since 1.0

[Function]clutter-animation-get-mode (self <clutter-animation>)
⇒ (ret unsigned-long)

[Method]get-mode
Retrieves the animation mode of animation, as set by clutter-animation-set-mode.

animation a <clutter-animation>

ret the mode for the animation

Since 1.0

[Function]clutter-animation-set-duration (self <clutter-animation>)
(msecs unsigned-int)

[Method]set-duration
Sets the duration of animation in milliseconds.

This function will set <"alpha"> and <"timeline"> if needed.

animation a <clutter-animation>

msecs the duration in milliseconds

Since 1.0

Chapter 8: Implicit Animations 72

[Function]clutter-animation-get-duration (self <clutter-animation>)
⇒ (ret unsigned-int)

[Method]get-duration
Retrieves the duration of animation, in milliseconds.

animation a <clutter-animation>

ret the duration of the animation

Since 1.0

[Function]clutter-animation-set-loop (self <clutter-animation>)
(loop bool)

[Method]set-loop
Sets whether animation should loop over itself once finished.

A looping <clutter-animation> will not emit the <"completed"> signal when fin-
ished.

This function will set <"alpha"> and <"timeline"> if needed.

animation a <clutter-animation>

loop ‘#t’ if the animation should loop

Since 1.0

[Function]clutter-animation-get-loop (self <clutter-animation>)
⇒ (ret bool)

[Method]get-loop
Retrieves whether animation is looping.

animation a <clutter-animation>

ret ‘#t’ if the animation is looping

Since 1.0

[Function]clutter-animation-set-timeline (self <clutter-animation>)
(timeline <clutter-timeline>)

[Method]set-timeline
Sets the <clutter-timeline> used by animation.

This function will take a reference on the passed timeline.

animation a <clutter-animation>

timeline a <clutter-timeline>, or ‘#f’ to unset the current <clutter-

timeline>.

Since 1.0

[Function]clutter-animation-get-timeline (self <clutter-animation>)
⇒ (ret <clutter-timeline>)

[Method]get-timeline
Retrieves the <clutter-timeline> used by animation

animation a <clutter-animation>

Chapter 8: Implicit Animations 73

ret the timeline used by the animation.

Since 1.0

[Function]clutter-animation-completed (self <clutter-animation>)
[Method]completed

Emits the ::completed signal on animation

When using this function with a <clutter-animation> created by the clutter-

actor-animate family of functions, animation will be unreferenced and it will not be
valid anymore, unless g-object-ref was called before calling this function or unless
a reference was taken inside a handler for the <"completed"> signal

animation a <clutter-animation>

Since 1.0

[Function]clutter-animation-bind (self <clutter-animation>)
(property name mchars) (final <gvalue>) ⇒ (ret <clutter-animation>)

[Method]bind
Adds a single property with name property-name to the animation animation. For
more information about animations, see clutter-actor-animate.

This method returns the animation primarily to make chained calls convenient in
language bindings.

animation a <clutter-animation>

property-name
the property to control

final The final value of the property

ret The animation itself.

Since 1.0

[Function]clutter-animation-bind-interval (self <clutter-animation>)
(property name mchars) (interval <clutter-interval>)
⇒ (ret <clutter-animation>)

[Method]bind-interval
Binds interval to the property-name of the <gobject> attached to animation. The
<clutter-animation> will take ownership of the passed <clutter-interval>. For
more information about animations, see clutter-actor-animate.

If you need to update the interval instance use clutter-animation-update-

interval instead.

animation a <clutter-animation>

property-name
the property to control

interval a <clutter-interval>.

ret The animation itself.

Since 1.0

Chapter 8: Implicit Animations 74

[Function]clutter-animation-update (self <clutter-animation>)
(property name mchars) (final <gvalue>) ⇒ (ret <clutter-animation>)

[Method]update
Updates the final value of the interval for property-name

animation a <clutter-animation>

property-name
name of the property

final The final value of the property

ret The animation itself.

Since 1.0

[Function]clutter-animation-update-interval (self <clutter-animation>)
(property name mchars) (interval <clutter-interval>)

[Method]update-interval
Changes the interval for property-name. The <clutter-animation> will take own-
ership of the passed <clutter-interval>.

animation a <clutter-animation>

property-name
name of the property

interval a <clutter-interval>

Since 1.0

[Function]clutter-animation-has-property (self <clutter-animation>)
(property name mchars) ⇒ (ret bool)

[Method]has-property
Checks whether animation is controlling property-name.

animation a <clutter-animation>

property-name
name of the property

ret ‘#t’ if the property is animated by the <clutter-animation>, ‘#f’ oth-
erwise

Since 1.0

[Function]clutter-animation-unbind-property (self <clutter-animation>)
(property name mchars)

[Method]unbind-property
Removes property-name from the list of animated properties.

animation a <clutter-animation>

property-name
name of the property

Since 1.0

Chapter 8: Implicit Animations 75

[Function]clutter-animation-get-interval (self <clutter-animation>)
(property name mchars) ⇒ (ret <clutter-interval>)

[Method]get-interval
Retrieves the <clutter-interval> associated to property-name inside animation.

animation a <clutter-animation>

property-name
name of the property

ret a <clutter-interval> or ‘#f’ if no property with the same name was
found. The returned interval is owned by the <clutter-animation> and
should not be unreferenced.

Since 1.0

[Function]clutter-actor-get-animation (self <clutter-actor>)
⇒ (ret <clutter-animation>)

[Method]get-animation
Retrieves the <clutter-animation> used by actor, if clutter-actor-animate has
been called on actor.

actor a <clutter-actor>

ret a <clutter-animation>, or ‘#f’.

Since 1.0

[Function]clutter-actor-detach-animation (self <clutter-actor>)
[Method]detach-animation

Detaches the <clutter-animation> used by actor, if clutter-actor-animate has
been called on actor.

Once the animation has been detached, it loses a reference. If it was the only reference
then the <clutter-animation> becomes invalid.

The <"completed"> signal will not be emitted.

actor a <clutter-actor>

Since 1.4

Chapter 9: ClutterAnimator 76

9 ClutterAnimator

Multi-actor tweener

9.1 Overview

<clutter-animator> is an object providing declarative animations for <gobject> proper-
ties belonging to one or more <gobject>s to <clutter-intervals>.

<clutter-animator> is used to build and describe complex animations in terms of
"key frames". <clutter-animator> is meant to be used through the <clutter-script>

definition format, but it comes with a convenience C API.

9.2 Key Frames

Every animation handled by a <clutter-animator> can be described in terms of "key
frames". For each <gobject> property there can be multiple key frames, each one defined
by the end value for the property to be computed starting from the current value to a
specific point in time, using a given easing mode.

The point in time is defined using a value representing the progress in the normalized
interval of [0, 1]. This maps the value returned by clutter-timeline-get-duration.

In the image above the duration of the animation is represented by the blue line. Each
key frame is the white dot, along with its progress. The red line represents the computed
function of time given the easing mode.

9.3 ClutterAnimator description for <clutter-script>

<clutter-animator> defines a custom "properties" property which allows describing the
key frames for objects.

The "properties" property has the following syntax:

{

"properties" : [

{

"object" : <id of an object>,

"name" : <name of the property>,

"ease-in" : <boolean>,

"interpolation" : <#ClutterInterpolation value>,

"keys" : [

[<progress>, <easing mode>, <final value>]

]

]

}

The following JSON fragment defines a <clutter-animator> with the duration of 1
second and operating on the x and y properties of a <clutter-actor> named "rect-01",
with two frames for each property. The first frame will linearly move the actor from its

Chapter 9: ClutterAnimator 77

current position to the 100, 100 position in 20 percent of the duration of the animation; the
second will using a cubic easing to move the actor to the 200, 200 coordinates.

{

"type" : "ClutterAnimator",

"duration" : 1000,

"properties" : [

{

"object" : "rect-01",

"name" : "x",

"ease-in" : true,

"keys" : [

[0.2, "linear", 100.0],

[1.0, "easeOutCubic", 200.0]

]

},

{

"object" : "rect-01",

"name" : "y",

"ease-in" : true,

"keys" : [

[0.2, "linear", 100.0],

[1.0, "easeOutCubic", 200.0]

]

}

]

}

<clutter-animator> is available since Clutter 1.2

9.4 Usage

[Function]clutter-animator-new ⇒ (ret <clutter-animator>)
Creates a new <clutter-animator> instance

ret a new <clutter-animator>.

Since 1.2

[Function]clutter-animator-set-key (self <clutter-animator>)
(object <gobject>) (property name mchars) (mode unsigned-int)
(progress double) (value <gvalue>) ⇒ (ret <clutter-animator>)

[Method]set-key
Sets a single key in the <clutter-animator> for the property-name of object at
progress.

See also: clutter-animator-set

animator a <clutter-animator>

Chapter 9: ClutterAnimator 78

object a <gobject>

property-name
the property to specify a key for

mode the id of the alpha function to use

progress the normalized range at which stage of the animation this value applies

value the value property name should have at progress.

ret The animator instance.

Since 1.2

[Function]clutter-animator-remove-key (self <clutter-animator>)
(object <gobject>) (property name mchars) (progress double)

[Method]remove-key
Removes all keys matching the conditions specificed in the arguments.

animator a <clutter-animator>

object a <gobject> to search for, or ‘#f’ for all.

property-name
a specific property name to query for, or ‘#f’ for all.

progress a specific progress to search for or a negative value for all

Since 1.2

[Function]clutter-animator-get-keys (self <clutter-animator>)
(object <gobject>) (property name mchars) (progress double)
⇒ (ret glist-of)

[Method]get-keys
Returns a list of pointers to opaque structures with accessor functions that describe
the keys added to an animator.

animator a <clutter-animator> instance

object a <gobject> to search for, or ‘#f’ for all objects.

property-name
a specific property name to query for, or ‘#f’ for all properties.

progress a specific progress to search for, or a negative value for all progresses

ret a list of <clutter-animator-key>s; the contents of the list are owned
by the <clutter-animator>, but you should free the returned list when
done, using g-list-free.

Since 1.2

[Function]clutter-animator-start (self <clutter-animator>)
⇒ (ret <clutter-timeline>)

[Method]start
Start the ClutterAnimator, this is a thin wrapper that rewinds and starts the anima-
tors current timeline.

Chapter 9: ClutterAnimator 79

animator a <clutter-animator>

ret the <clutter-timeline> that drives the animator. The returned time-
line is owned by the <clutter-animator> and it should not be unrefer-
enced.

Since 1.2

[Function]clutter-animator-compute-value (self <clutter-animator>)
(object <gobject>) (property name mchars) (progress double)
(value <gvalue>) ⇒ (ret bool)

[Method]compute-value
Compute the value for a managed property at a given progress.

If the property is an ease-in property, the current value of the property on the object
will be used as the starting point for computation.

animator a <clutter-animator>

object a <gobject>

property-name
the name of the property on object to check

progress a value between 0.0 and 1.0

value an initialized value to store the computed result

ret ‘#t’ if the computation yields has a value, otherwise (when an error occurs
or the progress is before any of the keys) ‘#f’ is returned and the <gvalue>
is left untouched

Since 1.2

[Function]clutter-animator-set-timeline (self <clutter-animator>)
(timeline <clutter-timeline>)

[Method]set-timeline
Sets an external timeline that will be used for driving the animation

animator a <clutter-animator>

timeline a <clutter-timeline>

Since 1.2

[Function]clutter-animator-get-timeline (self <clutter-animator>)
⇒ (ret <clutter-timeline>)

[Method]get-timeline
Get the timeline hooked up for driving the <clutter-animator>

animator a <clutter-animator>

ret the <clutter-timeline> that drives the animator.

Since 1.2

Chapter 9: ClutterAnimator 80

[Function]clutter-animator-set-duration (self <clutter-animator>)
(duration unsigned-int)

[Method]set-duration
Runs the timeline of the <clutter-animator> with a duration in msecs as specified.

animator a <clutter-animator>

duration milliseconds a run of the animator should last.

Since 1.2

[Function]clutter-animator-get-duration (self <clutter-animator>)
⇒ (ret unsigned-int)

[Method]get-duration
Retrieves the current duration of an animator

animator a <clutter-animator>

ret the duration of the animation, in milliseconds

Since 1.2

[Function]clutter-animator-key-get-object (self <clutter-animator-key>)
⇒ (ret <gobject>)

Retrieves the object a key applies to.

key a <clutter-animator-key>

ret the object an animator key exist for.

Since 1.2

[Function]clutter-animator-key-get-mode (self <clutter-animator-key>)
⇒ (ret unsigned-long)

Retrieves the mode of a <clutter-animator> key, for the first key of a property for
an object this represents the whether the animation is open ended and or curved for
the remainding keys for the property it represents the easing mode.

key a <clutter-animator-key>

ret the mode of a <clutter-animator-key>

Since 1.2

[Function]clutter-animator-key-get-progress
(self <clutter-animator-key>) ⇒ (ret double)

Retrieves the progress of an clutter animator key

key a <clutter-animator-key>

ret the progress defined for a <clutter-animator> key.

Since 1.2

Chapter 9: ClutterAnimator 81

[Function]clutter-animator-key-get-value (self <clutter-animator-key>)
(value <gvalue>) ⇒ (ret bool)

Retrieves a copy of the value for a <clutter-animator-key>.

The passed in <gvalue> needs to be already initialized for the value type of the key
or to a type that allow transformation from the value type of the key.

Use g-value-unset when done.

key a <clutter-animator-key>

value a <gvalue> initialized with the correct type for the animator key

ret ‘#t’ if the passed <gvalue> was successfully set, and ‘#f’ otherwise

Since 1.2

Chapter 10: ClutterBackend 82

10 ClutterBackend

Backend abstraction

10.1 Overview

Clutter can be compiled against different backends. Each backend has to implement a set
of functions, in order to be used by Clutter.

<clutter-backend> is the base class abstracting the various implementation; it provides
a basic API to query the backend for generic information and settings.

<clutter-backend> is available since Clutter 0.4

10.2 Usage

[Function]clutter-get-default-backend ⇒ (ret <clutter-backend>)
Retrieves the default <clutter-backend> used by Clutter. The <clutter-backend>
holds backend-specific configuration options.

ret the default backend. You should not ref or unref the returned object.
Applications should rarely need to use this.

Since 0.4

[Function]clutter-backend-get-resolution (self <clutter-backend>)
⇒ (ret double)

[Method]get-resolution
Gets the resolution for font handling on the screen.

The resolution is a scale factor between points specified in a <pango-font-

description> and cairo units. The default value is 96.0, meaning that a 10 point
font will be 13 units high (10 * 96. / 72. = 13.3).

Clutter will set the resolution using the current backend when initializing; the reso-
lution is also stored in the <"font-dpi"> property.

backend a <clutter-backend>

ret the current resolution, or -1 if no resolution has been set.

Since 0.4

[Function]clutter-backend-set-font-options (self <clutter-backend>)
(options cairo-font-options-t)

[Method]set-font-options
Sets the new font options for backend. The <clutter-backend> will copy the <cairo-
font-options-t>.

If options is ‘#f’, the first following call to clutter-backend-get-font-options will
return the default font options for backend.

This function is intended for actors creating a Pango layout using the PangoCairo
API.

backend a <clutter-backend>

Chapter 10: ClutterBackend 83

options Cairo font options for the backend, or ‘#f’

Since 0.8

[Function]clutter-check-windowing-backend (backend type mchars)
⇒ (ret bool)

Checks the run-time name of the Clutter windowing system backend, using the sym-
bolic macros like ‘CLUTTER_WINDOWING_WIN32’ or ‘CLUTTER_WINDOWING_X11’.

This function should be used in conjuction with the compile-time macros inside ap-
plications and libraries that are using the platform-specific windowing system API,
to ensure that they are running on the correct windowing system; for instance:

#ifdef CLUTTER_WINDOWING_X11

if (clutter_check_windowing_backend (CLUTTER_WINDOWING_X11))

{

/* it is safe to use the clutter_x11_* API */

}

else

#endif

#ifdef CLUTTER_WINDOWING_WIN32

if (clutter_check_windowing_backend (CLUTTER_WINDOWING_WIN32))

{

/* it is safe to use the clutter_win32_* API */

}

else

#endif

g_error ("Unknown Clutter backend.");

backend-type
the name of the backend to check

ret ‘#t’ if the current Clutter windowing system backend is the one checked,
and ‘#f’ otherwise

Since 1.10

Chapter 11: ClutterBinLayout 84

11 ClutterBinLayout

A simple layout manager

11.1 Overview

<clutter-bin-layout> is a layout manager which implements the following policy:

• the preferred size is the maximum preferred size between all the children of the container
using the layout;

• each child is allocated in "layers", on on top of the other;

• for each layer there are horizontal and vertical alignment policies.

(The missing figure, bin-layout

The image shows a <clutter-bin-layout> with three layers: a background <clutter-

cairo-texture>, set to fill on both the X and Y axis; a <clutter-texture>, set to center on
both the X and Y axis; and a <clutter-rectangle>, set to ‘CLUTTER_BIN_ALIGNMENT_END’
on both the X and Y axis.

The following code shows how to build a composite actor with a texture and a back-
ground, and add controls overlayed on top. The background is set to fill the whole allocation,
whilst the texture is centered; there is a control in the top right corner and a label in the
bottom, filling out the whole allocated width.

ClutterLayoutManager *manager;

ClutterActor *box;

/* create the layout first */

layout = clutter_bin_layout_new (CLUTTER_BIN_ALIGNMENT_CENTER,

CLUTTER_BIN_ALIGNMENT_CENTER);

box = clutter_box_new (layout); /* then the container */

/* we can use the layout object to add actors */

clutter_bin_layout_add (CLUTTER_BIN_LAYOUT (layout), background,

CLUTTER_BIN_ALIGNMENT_FILL,

CLUTTER_BIN_ALIGNMENT_FILL);

clutter_bin_layout_add (CLUTTER_BIN_LAYOUT (layout), icon,

CLUTTER_BIN_ALIGNMENT_CENTER,

CLUTTER_BIN_ALIGNMENT_CENTER);

/* align to the bottom left */

clutter_bin_layout_add (CLUTTER_BIN_LAYOUT (layout), label,

CLUTTER_BIN_ALIGNMENT_START,

CLUTTER_BIN_ALIGNMENT_END);

/* align to the top right */

clutter_bin_layout_add (CLUTTER_BIN_LAYOUT (layout), button,

CLUTTER_BIN_ALIGNMENT_END,

CLUTTER_BIN_ALIGNMENT_START);

Chapter 11: ClutterBinLayout 85

<clutter-bin-layout> is available since Clutter 1.2

11.2 Usage

[Function]clutter-bin-layout-new (x align <clutter-bin-alignment>)
(y align <clutter-bin-alignment>)
⇒ (ret <clutter-layout-manager>)

Creates a new <clutter-bin-layout> layout manager

x-align the default alignment policy to be used on the horizontal axis

y-align the default alignment policy to be used on the vertical axis

ret the newly created layout manager

Since 1.2

[Function]clutter-bin-layout-set-alignment (self <clutter-bin-layout>)
(child <clutter-actor>) (x align <clutter-bin-alignment>)
(y align <clutter-bin-alignment>)

[Method]set-alignment
Sets the horizontal and vertical alignment policies to be applied to a child of self

If child is ‘#f’ then the x-align and y-align values will be set as the default alignment
policies

self a <clutter-bin-layout>

child a child of container.

x-align the horizontal alignment policy to be used for the child inside container

y-align the vertical aligment policy to be used on the child inside container

Since 1.2

[Function]clutter-bin-layout-get-alignment (self <clutter-bin-layout>)
(child <clutter-actor>) ⇒ (x align <clutter-bin-alignment>)
(y align <clutter-bin-alignment>)

[Method]get-alignment
Retrieves the horizontal and vertical alignment policies for a child of self

If child is ‘#f’ the default alignment policies will be returned instead

self a <clutter-bin-layout>

child a child of container.

x-align return location for the horizontal alignment policy.

y-align return location for the vertical alignment policy.

Since 1.2

Chapter 11: ClutterBinLayout 86

[Function]clutter-bin-layout-add (self <clutter-bin-layout>)
(child <clutter-actor>) (x align <clutter-bin-alignment>)
(y align <clutter-bin-alignment>)

[Method]add
Adds a <clutter-actor> to the container using self and sets the alignment policies
for it

This function is equivalent to clutter-container-add-actor and clutter-layout-

manager-child-set-property but it does not require a pointer to the <clutter-

container> associated to the <clutter-bin-layout>

self a <clutter-bin-layout>

child a <clutter-actor>

x-align horizontal alignment policy for child

y-align vertical alignment policy for child

Since 1.2

Chapter 12: ClutterBindConstraint 87

12 ClutterBindConstraint

A constraint binding the position or size of an actor

12.1 Overview

<clutter-bind-constraint> is a <clutter-constraint> that binds the position or the
size of the <clutter-actor> to which it is applied to the the position or the size of another
<clutter-actor>, or "source".

An offset can be applied to the constraint, to avoid overlapping. The offset can also be
animated. For instance, the following code will set up three actors to be bound to the same
origin:

/* source */

rect[0] = clutter_rectangle_new_with_color (&red_color);

clutter_actor_set_position (rect[0], x_pos, y_pos);

clutter_actor_set_size (rect[0], 100, 100);

/* second rectangle */

rect[1] = clutter_rectangle_new_with_color (&green_color);

clutter_actor_set_size (rect[1], 100, 100);

clutter_actor_set_opacity (rect[1], 0);

constraint = clutter_bind_constraint_new (rect[0], CLUTTER_BIND_X, 0.0);

clutter_actor_add_constraint_with_name (rect[1], "green-x", constraint);

constraint = clutter_bind_constraint_new (rect[0], CLUTTER_BIND_Y, 0.0);

clutter_actor_add_constraint_with_name (rect[1], "green-y", constraint);

/* third rectangle */

rect[2] = clutter_rectangle_new_with_color (&blue_color);

clutter_actor_set_size (rect[2], 100, 100);

clutter_actor_set_opacity (rect[2], 0);

constraint = clutter_bind_constraint_new (rect[0], CLUTTER_BIND_X, 0.0);

clutter_actor_add_constraint_with_name (rect[2], "blue-x", constraint);

constraint = clutter_bind_constraint_new (rect[0], CLUTTER_BIND_Y, 0.0);

clutter_actor_add_constraint_with_name (rect[2], "blue-y", constraint);

The following code animates the second and third rectangles to "expand" them horizon-
tally from underneath the first rectangle:

clutter_actor_animate (rect[1], CLUTTER_EASE_OUT_CUBIC, 250,

"@constraints.green-x.offset", 100.0,

"opacity", 255,

NULL);

clutter_actor_animate (rect[2], CLUTTER_EASE_OUT_CUBIC, 250,

"@constraints.blue-x.offset", 200.0,

Chapter 12: ClutterBindConstraint 88

"opacity", 255,

NULL);

The example above creates eight rectangles and binds them to a rectangle positioned in
the center of the stage; when the user presses the center rectangle, the <"offset"> property
is animated through the clutter-actor-animate function to lay out the eight rectangles
around the center one. Pressing one of the outer rectangles will animate the offset back to
0.

<clutter-bind-constraint> is available since Clutter 1.4

12.2 Usage

[Function]clutter-bind-constraint-new (source <clutter-actor>)
(coordinate <clutter-bind-coordinate>) (offset float)
⇒ (ret <clutter-constraint>)

Creates a new constraint, binding a <clutter-actor>’s position to the given coordi-
nate of the position of source

source the <clutter-actor> to use as the source of the binding, or ‘#f’.

coordinate
the coordinate to bind

offset the offset to apply to the binding, in pixels

ret the newly created <clutter-bind-constraint>

Since 1.4

[Function]clutter-bind-constraint-set-source
(self <clutter-bind-constraint>) (source <clutter-actor>)

[Method]set-source
Sets the source <clutter-actor> for the constraint

constraint a <clutter-bind-constraint>

source a <clutter-actor>, or ‘#f’ to unset the source.

Since 1.4

[Function]clutter-bind-constraint-get-source
(self <clutter-bind-constraint>) ⇒ (ret <clutter-actor>)

[Method]get-source
Retrieves the <clutter-actor> set using clutter-bind-constraint-set-source

constraint a <clutter-bind-constraint>

ret a pointer to the source actor.

Since 1.4

[Function]clutter-bind-constraint-set-offset
(self <clutter-bind-constraint>) (offset float)

[Method]set-offset
Sets the offset to be applied to the constraint

Chapter 12: ClutterBindConstraint 89

constraint a <clutter-bind-constraint>

offset the offset to apply, in pixels

Since 1.4

[Function]clutter-bind-constraint-get-offset
(self <clutter-bind-constraint>) ⇒ (ret float)

[Method]get-offset
Retrieves the offset set using clutter-bind-constraint-set-offset

constraint a <clutter-bind-constraint>

ret the offset, in pixels

Since 1.4

Chapter 13: Key Bindings 90

13 Key Bindings

Pool for key bindings

13.1 Overview

<clutter-binding-pool> is a data structure holding a set of key bindings. Each key
binding associates a key symbol (eventually with modifiers) to an action. A callback function
is associated to each action.

For a given key symbol and modifier mask combination there can be only one action; for
each action there can be only one callback. There can be multiple actions with the same
name, and the same callback can be used to handle multiple key bindings.

Actors requiring key bindings should create a new <clutter-binding-pool> inside their
class initialization function and then install actions like this:

static void

foo_class_init (FooClass *klass)

{

ClutterBindingPool *binding_pool;

binding_pool = clutter_binding_pool_get_for_class (klass);

clutter_binding_pool_install_action (binding_pool, "move-up",

CLUTTER_Up, 0,

G_CALLBACK (foo_action_move_up),

NULL, NULL);

clutter_binding_pool_install_action (binding_pool, "move-up",

CLUTTER_KP_Up, 0,

G_CALLBACK (foo_action_move_up),

NULL, NULL);

}

The callback has a signature of:

gboolean (* callback) (GObject *instance,

const gchar *action_name,

guint key_val,

ClutterModifierType modifiers,

gpointer user_data);

The actor should then override the <"key-press-event"> and use clutter-binding-

pool-activate to match a <clutter-key-event> structure to one of the actions:

ClutterBindingPool *pool;

/* retrieve the binding pool for the type of the actor */

pool = clutter_binding_pool_find (G_OBJECT_TYPE_NAME (actor));

Chapter 13: Key Bindings 91

/* activate any callback matching the key symbol and modifiers

* mask of the key event. the returned value can be directly

* used to signal that the actor has handled the event.

*/

return clutter_binding_pool_activate (pool,

key_event->keyval,

key_event->modifier_state,

G_OBJECT (actor));

The clutter-binding-pool-activate function will return ‘#f’ if no action for the given
key binding was found, if the action was blocked (using clutter-binding-pool-block-

action) or if the key binding handler returned ‘#f’.

<clutter-binding-pool> is available since Clutter 1.0

13.2 Usage

[Function]clutter-binding-pool-new (name mchars)
⇒ (ret <clutter-binding-pool>)

Creates a new <clutter-binding-pool> that can be used to store key bindings
for an actor. The name must be a unique identifier for the binding pool, so that
clutter-binding-pool-find will be able to return the correct binding pool.

name the name of the binding pool

ret the newly created binding pool with the given name. Use g-object-

unref when done.

Since 1.0

[Function]clutter-binding-pool-get-for-class (klass <g-object-class>)
⇒ (ret <clutter-binding-pool>)

Retrieves the <clutter-binding-pool> for the given <gobject> class and, eventu-
ally, creates it. This function is a wrapper around clutter-binding-pool-new and
uses the class type name as the unique name for the binding pool.

Calling this function multiple times will return the same <clutter-binding-pool>.

A binding pool for a class can also be retrieved using clutter-binding-pool-find

with the class type name:

pool = clutter_binding_pool_find (G_OBJECT_TYPE_NAME (instance));

klass a <g-object-class> pointer

ret the binding pool for the given class. The returned <clutter-binding-

pool> is owned by Clutter and should not be freed directly.

Since 1.0

[Function]clutter-binding-pool-find (name mchars)
⇒ (ret <clutter-binding-pool>)

Finds the <clutter-binding-pool> with name.

Chapter 13: Key Bindings 92

name the name of the binding pool to find

ret a pointer to the <clutter-binding-pool>, or ‘#f’.

Since 1.0

[Function]clutter-binding-pool-find-action
(self <clutter-binding-pool>) (key val unsigned-int)
(modifiers <clutter-modifier-type>) ⇒ (ret mchars)

[Method]find-action
Retrieves the name of the action matching the given key symbol and modifiers bit-
mask.

pool a <clutter-binding-pool>

key-val a key symbol

modifiers a bitmask for the modifiers

ret the name of the action, if found, or ‘#f’. The returned string is owned by
the binding pool and should never be modified or freed

Since 1.0

[Function]clutter-binding-pool-remove-action
(self <clutter-binding-pool>) (key val unsigned-int)
(modifiers <clutter-modifier-type>)

[Method]remove-action
Removes the action matching the given key-val, modifiers pair, if any exists.

pool a <clutter-binding-pool>

key-val a key symbol

modifiers a bitmask for the modifiers

Since 1.0

[Function]clutter-binding-pool-block-action
(self <clutter-binding-pool>) (action name mchars)

[Method]block-action
Blocks all the actions with name action-name inside pool.

pool a <clutter-binding-pool>

action-name
an action name

Since 1.0

[Function]clutter-binding-pool-unblock-action
(self <clutter-binding-pool>) (action name mchars)

[Method]unblock-action
Unblockes all the actions with name action-name inside pool.

Unblocking an action does not cause the callback bound to it to be invoked in case
clutter-binding-pool-activate was called on an action previously blocked with
clutter-binding-pool-block-action.

Chapter 13: Key Bindings 93

pool a <clutter-binding-pool>

action-name
an action name

Since 1.0

[Function]clutter-binding-pool-activate (self <clutter-binding-pool>)
(key val unsigned-int) (modifiers <clutter-modifier-type>)
(gobject <gobject>) ⇒ (ret bool)

[Method]activate
Activates the callback associated to the action that is bound to the key-val and
modifiers pair.

The callback has the following signature:

void (* callback) (GObject *gobject,

const gchar *action_name,

guint key_val,

ClutterModifierType modifiers,

gpointer user_data);

Where the <gobject> instance is gobject and the user data is the one passed when
installing the action with clutter-binding-pool-install-action.

If the action bound to the key-val, modifiers pair has been blocked using clutter-

binding-pool-block-action, the callback will not be invoked, and this function will
return ‘#f’.

pool a <clutter-binding-pool>

key-val the key symbol

modifiers bitmask for the modifiers

gobject a <gobject>

ret ‘#t’ if an action was found and was activated

Since 1.0

Chapter 14: ClutterBlurEffect 94

14 ClutterBlurEffect

A blur effect

14.1 Overview

<clutter-blur-effect> is a sub-class of <clutter-effect> that allows blurring a actor
and its contents.

<clutter-blur-effect> is available since Clutter 1.4

14.2 Usage

[Function]clutter-blur-effect-new ⇒ (ret <clutter-effect>)
Creates a new <clutter-blur-effect> to be used with clutter-actor-add-effect

ret the newly created <clutter-blur-effect> or ‘#f’

Since 1.4

Chapter 15: ClutterBoxLayout 95

15 ClutterBoxLayout

A layout manager arranging children on a single line

15.1 Overview

The <clutter-box-layout> is a <clutter-layout-manager> implementing the following
layout policy:

•
•
•
•
•
•
•

all children are arranged on a single line;

the axis used is controlled by the <"vertical"> boolean property;

the order of the packing is determined by the <"pack-start"> boolean property;

each child will be allocated to its natural size or, if set to expand, the available size;

if a child is set to fill on either (or both) axis, its allocation will match all the available
size; the fill layout property only makes sense if the expand property is also set;

if a child is set to expand but not to fill then it is possible to control the alignment using
the X and Y alignment layout properties.

if the <"homogeneous"> boolean property is set, then all widgets will get the same size,
ignoring expand settings and the preferred sizes

(The missing figure, box-layout

The image shows a <clutter-box-layout> with the <"vertical"> property set to ‘#f’.

It is possible to control the spacing between children of a <clutter-box-layout> by
using clutter-box-layout-set-spacing.

In order to set the layout properties when packing an actor inside a <clutter-box-

layout> you should use the clutter-box-layout-pack function.

<clutter-box-layout> is available since Clutter 1.2

15.2 Usage

[Function]clutter-box-layout-new ⇒ (ret <clutter-layout-manager>)
Creates a new <clutter-box-layout> layout manager

ret the newly created <clutter-box-layout>

Since 1.2

Chapter 15: ClutterBoxLayout 96

[Function]clutter-box-layout-set-pack-start (self <clutter-box-layout>)
(pack start bool)

[Method]set-pack-start
Sets whether children of layout should be layed out by appending them or by prepend-
ing them

layout a <clutter-box-layout>

pack-start ‘#t’ if the layout should pack children at the beginning of the layout

Since 1.2

[Function]clutter-box-layout-get-pack-start (self <clutter-box-layout>)
⇒ (ret bool)

[Method]get-pack-start
Retrieves the value set using clutter-box-layout-set-pack-start

layout a <clutter-box-layout>

ret ‘#t’ if the <clutter-box-layout> should pack children at the beginning
of the layout, and ‘#f’ otherwise

Since 1.2

[Function]clutter-box-layout-set-spacing (self <clutter-box-layout>)
(spacing unsigned-int)

[Method]set-spacing
Sets the spacing between children of layout

layout a <clutter-box-layout>

spacing the spacing between children of the layout, in pixels

Since 1.2

[Function]clutter-box-layout-get-spacing (self <clutter-box-layout>)
⇒ (ret unsigned-int)

[Method]get-spacing
Retrieves the spacing set using clutter-box-layout-set-spacing

layout a <clutter-box-layout>

ret the spacing between children of the <clutter-box-layout>

Since 1.2

[Function]clutter-box-layout-set-vertical (self <clutter-box-layout>)
(vertical bool)

[Method]set-vertical
Sets whether layout should arrange its children vertically alongside the Y axis, instead
of horizontally alongside the X axis

layout a <clutter-box-layout>

vertical ‘#t’ if the layout should be vertical

Since 1.2

Chapter 15: ClutterBoxLayout 97

[Function]clutter-box-layout-get-vertical (self <clutter-box-layout>)
⇒ (ret bool)

[Method]get-vertical
Retrieves the orientation of the layout as set using the clutter-box-layout-set-

vertical function

layout a <clutter-box-layout>

ret ‘#t’ if the <clutter-box-layout> is arranging its children vertically, and
‘#f’ otherwise

Since 1.2

[Function]clutter-box-layout-set-homogeneous
(self <clutter-box-layout>) (homogeneous bool)

[Method]set-homogeneous
Sets whether the size of layout children should be homogeneous

layout a <clutter-box-layout>

homogeneous
‘#t’ if the layout should be homogeneous

Since 1.4

[Function]clutter-box-layout-get-homogeneous
(self <clutter-box-layout>) ⇒ (ret bool)

[Method]get-homogeneous
Retrieves if the children sizes are allocated homogeneously.

layout a <clutter-box-layout>

ret ‘#t’ if the <clutter-box-layout> is arranging its children
homogeneously, and ‘#f’ otherwise

Since 1.4

[Function]clutter-box-layout-pack (self <clutter-box-layout>)
(actor <clutter-actor>) (expand bool) (x fill bool) (y fill bool)
(x align <clutter-box-alignment>)
(y align <clutter-box-alignment>)

[Method]pack
Packs actor inside the <clutter-container> associated to layout and sets the layout
properties

layout a <clutter-box-layout>

actor a <clutter-actor>

expand whether the actor should expand

x-fill whether the actor should fill horizontally

y-fill whether the actor should fill vertically

x-align the horizontal alignment policy for actor

Chapter 15: ClutterBoxLayout 98

y-align the vertical alignment policy for actor

Since 1.2

[Function]clutter-box-layout-set-alignment (self <clutter-box-layout>)
(actor <clutter-actor>) (x align <clutter-box-alignment>)
(y align <clutter-box-alignment>)

[Method]set-alignment
Sets the horizontal and vertical alignment policies for actor inside layout

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

x-align Horizontal alignment policy for actor

y-align Vertical alignment policy for actor

Since 1.2

[Function]clutter-box-layout-get-alignment (self <clutter-box-layout>)
(actor <clutter-actor>) ⇒ (x align <clutter-box-alignment>)
(y align <clutter-box-alignment>)

[Method]get-alignment
Retrieves the horizontal and vertical alignment policies for actor as set using clutter-
box-layout-pack or clutter-box-layout-set-alignment

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

x-align return location for the horizontal alignment policy.

y-align return location for the vertical alignment policy.

Since 1.2

[Function]clutter-box-layout-set-expand (self <clutter-box-layout>)
(actor <clutter-actor>) (expand bool)

[Method]set-expand
Sets whether actor should expand inside layout

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

expand whether actor should expand

Since 1.2

[Function]clutter-box-layout-get-expand (self <clutter-box-layout>)
(actor <clutter-actor>) ⇒ (ret bool)

[Method]get-expand
Retrieves whether actor should expand inside layout

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

Chapter 15: ClutterBoxLayout 99

ret ‘#t’ if the <clutter-actor> should expand, ‘#f’ otherwise

Since 1.2

[Function]clutter-box-layout-set-fill (self <clutter-box-layout>)
(actor <clutter-actor>) (x fill bool) (y fill bool)

[Method]set-fill
Sets the horizontal and vertical fill policies for actor inside layout

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

x-fill whether actor should fill horizontally the allocated space

y-fill whether actor should fill vertically the allocated space

Since 1.2

[Function]clutter-box-layout-get-fill (self <clutter-box-layout>)
(actor <clutter-actor>) ⇒ (x fill bool) (y fill bool)

[Method]get-fill
Retrieves the horizontal and vertical fill policies for actor as set using clutter-box-

layout-pack or clutter-box-layout-set-fill

layout a <clutter-box-layout>

actor a <clutter-actor> child of layout

x-fill return location for the horizontal fill policy.

y-fill return location for the vertical fill policy.

Since 1.2

[Function]clutter-box-layout-set-easing-mode
(self <clutter-box-layout>) (mode unsigned-long)

[Method]set-easing-mode
Sets the easing mode to be used by layout when animating changes in layout properties

Use clutter-box-layout-set-use-animations to enable and disable the anima-
tions

layout a <clutter-box-layout>

mode an easing mode, either from <clutter-animation-mode> or a logical id
from clutter-alpha-register-func

Since 1.2

[Function]clutter-box-layout-get-easing-mode
(self <clutter-box-layout>) ⇒ (ret unsigned-long)

[Method]get-easing-mode
Retrieves the easing mode set using clutter-box-layout-set-easing-mode

layout a <clutter-box-layout>

ret an easing mode

Since 1.2

Chapter 16: ClutterBrightnessContrastEffect 100

16 ClutterBrightnessContrastEffect

Increase/decrease brightness and/or contrast of actor.

16.1 Overview

<clutter-brightness-contrast-effect> is a sub-class of <clutter-effect> that
changes the overall brightness of a <clutter-actor>.

<clutter-brightness-contrast-effect> is available since Clutter 1.10

16.2 Usage

Chapter 17: ClutterCairoTexture 101

17 ClutterCairoTexture

Texture with Cairo integration

17.1 Overview

<clutter-cairo-texture> is a <clutter-texture> that displays the contents of a Cairo
context. The <clutter-cairo-texture> actor will create a Cairo image surface which will
then be uploaded to a GL texture when needed.

Since <clutter-cairo-texture> uses a Cairo image surface internally all the drawing
operations will be performed in software and not using hardware acceleration. This can
lead to performance degradation if the contents of the texture change frequently.

In order to use a <clutter-cairo-texture> you should connect to the <"draw"> signal;
the signal is emitted each time the <clutter-cairo-texture> has been told to invalidate its
contents, by using clutter-cairo-texture-invalidate-rectangle or its sister function,
clutter-cairo-texture-invalidate.

Each callback to the <"draw"> signal will receive a <cairo-t> context which can be used
for drawing; the Cairo context is owned by the <clutter-cairo-texture> and should not
be destroyed explicitly.

<clutter-cairo-texture> is available since Clutter 1.0.

17.2 Usage

[Function]clutter-cairo-texture-new (width unsigned-int)
(height unsigned-int) ⇒ (ret <clutter-actor>)

Creates a new <clutter-cairo-texture> actor, with a surface of width by height
pixels.

width the width of the surface

height the height of the surface

ret the newly created <clutter-cairo-texture> actor

Since 1.0

[Function]clutter-cairo-texture-invalidate
(self <clutter-cairo-texture>)

[Method]invalidate
Invalidates the whole surface of a <clutter-cairo-texture>.

This function will cause the <"draw"> signal to be emitted.

See also: clutter-cairo-texture-invalidate-rectangle

self a <clutter-cairo-texture>

Since 1.8

Chapter 17: ClutterCairoTexture 102

[Function]clutter-cairo-texture-clear (self <clutter-cairo-texture>)
[Method]clear

Clears self ’s internal drawing surface, so that the next upload will replace the previous
contents of the <clutter-cairo-texture> rather than adding to it.

Calling this function from within a <"draw"> signal handler will clear the invalidated
area.

self a <clutter-cairo-texture>

Since 1.0

[Function]clutter-cairo-set-source-color (cr cairo-t)
(color <clutter-color>)

Utility function for setting the source color of cr using a <clutter-color>. This
function is the equivalent of:

cairo_set_source_rgba (cr,

color->red / 255.0,

color->green / 255.0,

color->blue / 255.0,

color->alpha / 255.0);

cr a Cairo context

color a <clutter-color>

Since 1.0

Chapter 18: ClutterCanvas 103

18 ClutterCanvas

Content for 2D painting

18.1 Overview

The <clutter-canvas> class is a <clutter-content> implementation that allows drawing
using the Cairo API on a 2D surface.

In order to draw on a <clutter-canvas>, you should connect a handler to the
<"draw"> signal; the signal will receive a <cairo-t> context that can be used to
draw. <clutter-canvas> will emit the <"draw"> signal when invalidated using
clutter-content-invalidate.

<clutter-canvas> is available since Clutter 1.10.

18.2 Usage

[Function]clutter-canvas-new ⇒ (ret <clutter-content>)
Creates a new instance of <clutter-canvas>.

You should call clutter-canvas-set-size to set the size of the canvas.

You should call clutter-content-invalidate every time you wish to draw the con-
tents of the canvas.

ret The newly allocated instance of <clutter-canvas>. Use g-object-

unref when done.

Since 1.10

[Function]clutter-canvas-set-size (self <clutter-canvas>) (width int)
(height int)

[Method]set-size
Sets the size of the canvas.

This function will cause the canvas to be invalidated.

canvas a <clutter-canvas>

width the width of the canvas, in pixels

height the height of the canvas, in pixels

Since 1.10

Chapter 19: ClutterChildMeta 104

19 ClutterChildMeta

Wrapper for actors inside a container

19.1 Overview

<clutter-child-meta> is a wrapper object created by <clutter-container> implemen-
tations in order to store child-specific data and properties.

A <clutter-child-meta> wraps a <clutter-actor> inside a <clutter-container>.

<clutter-child-meta> is available since Clutter 0.8

19.2 Usage

[Function]clutter-child-meta-get-container (self <clutter-child-meta>)
⇒ (ret <clutter-container>)

[Method]get-container
Retrieves the container using data

data a <clutter-child-meta>

ret a <clutter-container>.

Since 0.8

[Function]clutter-child-meta-get-actor (self <clutter-child-meta>)
⇒ (ret <clutter-actor>)

[Method]get-actor
Retrieves the actor wrapped by data

data a <clutter-child-meta>

ret a <clutter-actor>.

Since 0.8

Chapter 20: ClutterClickAction 105

20 ClutterClickAction

Action for clickable actors

20.1 Overview

<clutter-click-action> is a sub-class of <clutter-action> that implements the logic
for clickable actors, by using the low level events of <clutter-actor>, such as <"button-
press-event"> and <"button-release-event">, to synthesize the high level <"clicked">
signal.

To use <clutter-click-action> you just need to apply it to a <clutter-actor> using
clutter-actor-add-action and connect to the <"clicked"> signal:

ClutterAction *action = clutter_click_action_new ();

clutter_actor_add_action (actor, action);

g_signal_connect (action, "clicked", G_CALLBACK (on_clicked), NULL);

<clutter-click-action> also supports long press gestures: a long press is activated if
the pointer remains pressed within a certain threshold (as defined by the <"long-press-

threshold"> property) for a minimum amount of time (as the defined by the <"long-

press-duration"> property). The <"long-press"> signal is emitted multiple times, using
different <clutter-long-press-state> values; to handle long presses you should connect
to the <"long-press"> signal and handle the different states:

static gboolean

on_long_press (ClutterClickAction *action,

ClutterActor *actor,

ClutterLongPressState state)

{

switch (state)

{

case CLUTTER_LONG_PRESS_QUERY:

/* return TRUE if the actor should support long press

* gestures, and FALSE otherwise; this state will be

* emitted on button presses

*/

return TRUE;

case CLUTTER_LONG_PRESS_ACTIVATE:

/* this state is emitted if the minimum duration has

* been reached without the gesture being cancelled.

* the return value is not used

*/

return TRUE;

Chapter 20: ClutterClickAction 106

case CLUTTER_LONG_PRESS_CANCEL:

/* this state is emitted if the long press was cancelled;

* for instance, the pointer went outside the actor or the

* allowed threshold, or the button was released before

* the minimum duration was reached. the return value is

* not used

*/

return FALSE;

}

}

<clutter-click-action> is available since Clutter 1.4

20.2 Usage

[Function]clutter-click-action-new ⇒ (ret <clutter-action>)
Creates a new <clutter-click-action> instance

ret the newly created <clutter-click-action>

Since 1.4

[Function]clutter-click-action-get-button (self <clutter-click-action>)
⇒ (ret unsigned-int)

[Method]get-button
Retrieves the button that was pressed.

action a <clutter-click-action>

ret the button value

Since 1.4

[Function]clutter-click-action-get-state (self <clutter-click-action>)
⇒ (ret <clutter-modifier-type>)

[Method]get-state
Retrieves the modifier state of the click action.

action a <clutter-click-action>

ret the modifier state parameter, or 0

Since 1.6

[Function]clutter-click-action-get-coords (self <clutter-click-action>)
⇒ (press x float) (press y float)

[Method]get-coords
Retrieves the screen coordinates of the button press.

action a <clutter-click-action>

press-x return location for the X coordinate, or ‘#f’.

press-y return location for the Y coordinate, or ‘#f’.

Since 1.8

Chapter 20: ClutterClickAction 107

[Function]clutter-click-action-release (self <clutter-click-action>)
[Method]release

Emulates a release of the pointer button, which ungrabs the pointer and unsets the
<"pressed"> state.

This function will also cancel the long press gesture if one was initiated.

This function is useful to break a grab, for instance after a certain amount of time
has passed.

action a <clutter-click-action>

Since 1.4

Chapter 21: ClutterClone 108

21 ClutterClone

An actor that displays a clone of a source actor

21.1 Overview

<clutter-clone> is a <clutter-actor> which draws with the paint function of another
actor, scaled to fit its own allocation.

<clutter-clone> can be used to efficiently clone any other actor.

This is different from clutter-texture-new-from-actor which requires support for
FBOs in the underlying GL implementation.

<clutter-clone> is available since Clutter 1.0

21.2 Usage

[Function]clutter-clone-new (source <clutter-actor>)
⇒ (ret <clutter-actor>)

Creates a new <clutter-actor> which clones source/

source a <clutter-actor>, or ‘#f’

ret the newly created <clutter-clone>

Since 1.0

[Function]clutter-clone-set-source (self <clutter-clone>)
(source <clutter-actor>)

[Method]set-source
Sets source as the source actor to be cloned by self.

self a <clutter-clone>

source a <clutter-actor>, or ‘#f’.

Since 1.0

[Function]clutter-clone-get-source (self <clutter-clone>)
⇒ (ret <clutter-actor>)

[Method]get-source
Retrieves the source <clutter-actor> being cloned by self.

self a <clutter-clone>

ret the actor source for the clone.

Since 1.0

Chapter 22: Colors 109

22 Colors

Color management and manipulation.

22.1 Overview

<clutter-color> is a simple type for representing colors in Clutter.

A <clutter-color> is expressed as a 4-tuple of values ranging from zero to 255, one for
each color channel plus one for the alpha.

The alpha channel is fully opaque at 255 and fully transparent at 0.

22.2 Usage

[Function]clutter-color-new (red unsigned-int8) (green unsigned-int8)
(blue unsigned-int8) (alpha unsigned-int8) ⇒ (ret <clutter-color>)

Creates a new <clutter-color> with the given values.

red red component of the color, between 0 and 255

green green component of the color, between 0 and 255

blue blue component of the color, between 0 and 255

alpha alpha component of the color, between 0 and 255

ret the newly allocated color. Use clutter-color-free when done.

Since 0.8.4

[Function]clutter-color-get-static (color <clutter-static-color>)
⇒ (ret <clutter-color>)

Retrieves a static color for the given color name

Static colors are created by Clutter and are guaranteed to always be available and
valid

color the named global color

ret a pointer to a static color; the returned pointer is owned by Clutter and
it should never be modified or freed

Since 1.6

[Function]clutter-color-from-string (name mchars) ⇒ (ret scm)
Parses a string definition of a color, filling the "red") , (structfield "alpha") channels
of color.

The color is not allocated.

The format of str can be either one of:

•
•
•
•

Chapter 22: Colors 110

•
•

a standard name (as taken from the X11 rgb.txt file)

an hexadecimal value in the form: ‘#rgb’, ‘#rrggbb’, ‘#rgba’
or ‘#rrggbbaa’

a RGB color in the form: ‘rgb(r, g, b)’

a RGB color in the form: ‘rgba(r, g, b, a)’

a HSL color in the form: ‘hsl(h, s, l)’

a HSL color in the form: ‘hsla(h, s, l, a)’

where ’r’, ’g’, ’b’ and ’a’ are (respectively) the red, green, blue color intensities and
the opacity. The ’h’, ’s’ and ’l’ are (respectively) the hue, saturation and luminance
values.

In the rgb and rgba formats, the ’r’, ’g’, and ’b’ values are either integers between
0 and 255, or percentage values in the range between 0% and 100%; the percentages
require the ’%’ character. The ’a’ value, if specified, can only be a floating point value
between 0.0 and 1.0.

In the hls and hlsa formats, the ’h’ value (hue) it’s an angle between 0 and 360.0
degrees; the ’l’ and ’s’ values (luminance and saturation) are a floating point value
between 0.0 and 1.0. The ’a’ value, if specified, can only be a floating point value
between 0.0 and 1.0.

Whitespace inside the definitions is ignored; no leading whitespace is allowed.

If the alpha component is not specified then it is assumed to be set to be fully opaque.

color return location for a <clutter-color>.

str a string specifiying a color

ret ‘#t’ if parsing succeeded, and ‘#f’ otherwise

Since 1.0

[Function]clutter-color-to-string (self <clutter-color>) ⇒ (ret mchars)
Returns a textual specification of color in the hexadecimal form ‘#rrggbbaa’,
where ‘r’, ‘g’, ‘b’ and ‘a’ are hexadecimal digits representing the red, green, blue and
alpha components respectively.

color a <clutter-color>

ret a newly-allocated text string.

Since 0.2

[Function]clutter-color-from-hls (self <clutter-color>) (hue float)
(luminance float) (saturation float)

Converts a color expressed in HLS (hue, luminance and saturation) values into a
<clutter-color>.

color return location for a <clutter-color>.

hue hue value, in the 0 .. 360 range

Chapter 22: Colors 111

luminance luminance value, in the 0 .. 1 range

saturation saturation value, in the 0 .. 1 range

[Function]clutter-color-to-hls (self <clutter-color>) ⇒ (hue float)
(luminance float) (saturation float)

Converts color to the HLS format.

The hue value is in the 0 .. 360 range. The luminance and saturation values are in
the 0 .. 1 range.

color a <clutter-color>

hue return location for the hue value or ‘#f’.

luminance return location for the luminance value or ‘#f’.

saturation return location for the saturation value or ‘#f’.

[Function]clutter-color-from-pixel (self <clutter-color>)
(pixel unsigned-int32)

Converts pixel from the packed representation of a four 8 bit channel color to a
<clutter-color>.

color return location for a <clutter-color>.

pixel a 32 bit packed integer containing a color

[Function]clutter-color-to-pixel (self <clutter-color>)
⇒ (ret unsigned-int32)

Converts color into a packed 32 bit integer, containing all the four 8 bit channels used
by <clutter-color>.

color a <clutter-color>

ret a packed color

[Function]clutter-color-add (self <clutter-color>) (b <clutter-color>)
(result <clutter-color>)

Adds a to b and saves the resulting color inside result.

The alpha channel of result is set as as the maximum value between the alpha channels
of a and b.

a a <clutter-color>

b a <clutter-color>

result return location for the result.

[Function]clutter-color-subtract (self <clutter-color>)
(b <clutter-color>) (result <clutter-color>)

Subtracts b from a and saves the resulting color inside result.

This function assumes that the components of a are greater than the components of
b; the result is, otherwise, undefined.

The alpha channel of result is set as the minimum value between the alpha channels
of a and b.

Chapter 22: Colors 112

a a <clutter-color>

b a <clutter-color>

result return location for the result.

[Function]clutter-color-lighten (self <clutter-color>)
(result <clutter-color>)

Lightens color by a fixed amount, and saves the changed color in result.

color a <clutter-color>

result return location for the lighter color.

[Function]clutter-color-darken (self <clutter-color>)
(result <clutter-color>)

Darkens color by a fixed amount, and saves the changed color in result.

color a <clutter-color>

result return location for the darker color.

[Function]clutter-color-shade (self <clutter-color>) (factor double)
(result <clutter-color>)

Shades color by factor and saves the modified color into result.

color a <clutter-color>

factor the shade factor to apply

result return location for the shaded color.

[Function]clutter-color-interpolate (self <clutter-color>)
(final <clutter-color>) (progress double) (result <clutter-color>)

Interpolates between initial and final<clutter-color>s using progress

initial the initial <clutter-color>

final the final <clutter-color>

progress the interpolation progress

result return location for the interpolation.

Since 1.6

[Function]clutter-value-set-color (value <gvalue>)
(color <clutter-color>)

Sets value to color.

value a <gvalue> initialized to <clutter-type-color>

color the color to set

Since 0.8.4

Chapter 22: Colors 113

[Function]clutter-value-get-color (value <gvalue>)
⇒ (ret <clutter-color>)

Gets the <clutter-color> contained in value.

value a <gvalue> initialized to <clutter-type-color>

ret the color inside the passed <gvalue>.

Since 0.8.4

Chapter 23: ClutterColorizeEffect 114

23 ClutterColorizeEffect

A colorization effect

23.1 Overview

<clutter-colorize-effect> is a sub-class of <clutter-effect> that colorizes an actor
with the given tint.

<clutter-colorize-effect> is available since Clutter 1.4

23.2 Usage

[Function]clutter-colorize-effect-new (self <clutter-color>)
⇒ (ret <clutter-effect>)

Creates a new <clutter-colorize-effect> to be used with clutter-actor-add-

effect

tint the color to be used

ret the newly created <clutter-colorize-effect> or ‘#f’

Since 1.4

[Function]clutter-colorize-effect-set-tint
(self <clutter-colorize-effect>) (tint <clutter-color>)

[Method]set-tint
Sets the tint to be used when colorizing

effect a <clutter-colorize-effect>

tint the color to be used

Since 1.4

[Function]clutter-colorize-effect-get-tint
(self <clutter-colorize-effect>) (tint <clutter-color>)

[Method]get-tint
Retrieves the tint used by effect

effect a <clutter-colorize-effect>

tint return location for the color used.

Since 1.4

Chapter 24: ClutterConstraint 115

24 ClutterConstraint

Abstract class for constraints on position or size

24.1 Overview

<clutter-constraint> is a base abstract class for modifiers of a <clutter-actor> position
or size.

A <clutter-constraint> sub-class should contain the logic for modifying the position
or size of the <clutter-actor> to which it is applied, by updating the actor’s allocation.
Each <clutter-constraint> can change the allocation of the actor to which they are
applied by overriding the update-allocation virtual function.

24.2 Using Constraints

Constraints can be used with fixed layout managers, like <clutter-fixed-layout>, or
with actors implicitly using a fixed layout manager, like <clutter-group> and <clutter-

stage>.

Constraints provide a way to build user interfaces by using relations between <clutter-

actor>s, without explicit fixed positioning and sizing, similarly to how fluid layout managers
like <clutter-box-layout> and <clutter-table-layout> lay out their children.

Constraints are attached to a <clutter-actor>, and are available for inspection using
clutter-actor-get-constraints.

Clutter provides different implementation of the <clutter-constraint> abstract class,
for instance:

<clutter-bind-constraint>
this constraint binds the X, Y, width or height of an actor to the corresponding
position or size of a source actor; it can also apply an offset.

<clutter-snap-constraint>
this constraint "snaps" together the edges of two <clutter-actor>s; if an
actor uses two constraints on both its horizontal or vertical edges then it can
also expand to fit the empty space.

The example below uses various <clutter-constraint>s to lay out three actors on a
resizable stage. Only the central actor has an explicit size, and no actor has an explicit
position.

1. The <clutter-rectangle> with <"name">layerA is explicitly sized to 100 pixels by 25
pixels, and it’s added to the <clutter-stage>;

2. two <clutter-align-constraint>s are used to anchor layerA to the center of the
stage, by using 0.5 as the alignment <"factor"> on both the X and Y axis.

3. the <clutter-rectangle> with <"name">layerB is added to the <clutter-stage>

with no explicit size;

4. the <"x"> and <"width"> of layerB are bound to the same properties of layerA using
two <clutter-bind-constraint> objects, thus keeping layerB aligned to layerA;

Chapter 24: ClutterConstraint 116

5. the top edge of layerB is snapped together with the bottom edge of layerA; the bottom
edge of layerB is also snapped together with the bottom edge of the <clutter-stage>;
an offset is given to the two <clutter-snap-constraint>s to allow for some padding;
since layerB is snapped between two different <clutter-actor>s, its height is stretched
to match the gap;

6. the <clutter-rectangle> with <"name">layerC mirrors layerB, snapping the top edge
of the <clutter-stage> to the top edge of layerC and the top edge of layerA to the
bottom edge of layerC ;

You can try resizing interactively the <clutter-stage> and verify that the three
<clutter-actor>s maintain the same position and size relative to each other, and to the
<clutter-stage>.

It’s important to note that Clutter does not avoid loops or competing constraints; if
two or more <clutter-constraint>s are operating on the same positional or dimensional
attributes of an actor, or if the constraints on two different actors depend on each other,
then the behavior is undefined.

24.3 Implementing a ClutterConstraint

Creating a sub-class of <clutter-constraint> requires the implementation of the update-
allocation virtual function.

The update-allocation virtual function is called during the allocation sequence of a
<clutter-actor>, and allows any <clutter-constraint> attached to that actor to modify
the allocation before it is passed to the allocate implementation.

The <clutter-actor-box> passed to the update-allocation implementation contains
the original allocation of the <clutter-actor>, plus the eventual modifications applied by
the other <clutter-constraint>s.

Constraints are queried in the same order as they were applied using clutter-actor-

add-constraint or clutter-actor-add-constraint-with-name.

It is not necessary for a <clutter-constraint> sub-class to chain up to the parent’s
implementation.

If a <clutter-constraint> is parametrized - i.e. if it contains properties that affect the
way the constraint is implemented - it should call clutter-actor-queue-relayout on the
actor to which it is attached to whenever any parameter is changed. The actor to which it
is attached can be recovered at any point using clutter-actor-meta-get-actor.

<clutter-constraint> is available since Clutter 1.4

24.4 Usage

Chapter 25: ClutterContainer 117

25 ClutterContainer

An interface for container actors

25.1 Overview

<clutter-container> is an interface implemented by <clutter-actor>, and it provides
some common API for notifying when a child actor is added or removed, as well as the
infrastructure for accessing child properties through <clutter-child-meta>.

Until Clutter 1.10, the <clutter-container> interface was also the public API for
implementing container actors; this part of the interface has been deprecated: <clutter-

container> has a default implementation which defers to <clutter-actor> the child addi-
tion and removal, as well as the iteration. See the documentation of <clutter-container-
iface> for the list of virtual functions that should be overridden.

25.2 Usage

[Function]clutter-container-child-notify (self <clutter-container>)
(child <clutter-actor>) (pspec <gparam>)

[Method]child-notify
Calls the clutter-container-iface.child-notify virtual function of <clutter-
container>. The default implementation will emit the <"child-notify"> signal.

container a <clutter-container>

child a <clutter-actor>

pspec a <gparam>

Since 1.6

[Function]clutter-container-create-child-meta
(self <clutter-container>) (actor <clutter-actor>)

[Method]create-child-meta
Creates the <clutter-child-meta> wrapping actor inside the container, if the
<"child-meta-type"> class member is not set to ‘G_TYPE_INVALID’.

This function is only useful when adding a <clutter-actor> to a <clutter-

container> implementation outside of the <clutter-container>::add virtual
function implementation.

Applications should not call this function.

container a <clutter-container>

actor a <clutter-actor>

Since 1.2

[Function]clutter-container-get-child-meta (self <clutter-container>)
(actor <clutter-actor>) ⇒ (ret <clutter-child-meta>)

[Method]get-child-meta
Retrieves the <clutter-child-meta> which contains the data about the container
specific state for actor.

Chapter 25: ClutterContainer 118

container a <clutter-container>

actor a <clutter-actor> that is a child of container.

ret the <clutter-child-meta> for the actor child of container or ‘#f’ if the
specifiec actor does not exist or the container is not configured to provide
<clutter-child-meta>s.

Since 0.8

Chapter 26: ClutterContent 119

26 ClutterContent

Delegate for painting the content of an actor

26.1 Overview

<clutter-content> is an interface to implement types responsible for painting the content
of a <clutter-actor>.

Multiple actors can use the same <clutter-content> instance, in order to share the
resources associated with painting the same content.

<clutter-content> is available since Clutter 1.10.

26.2 Usage

[Function]clutter-content-get-preferred-size (self <clutter-content>)
⇒ (ret bool) (width float) (height float)

[Method]get-preferred-size
Retrieves the natural size of the content, if any.

The natural size of a <clutter-content> is defined as the size the content would
have regardless of the allocation of the actor that is painting it, for instance the size
of an image data.

content a <clutter-content>

width return location for the natural width of the content.

height return location for the natural height of the content.

ret ‘#t’ if the content has a preferred size, and ‘#f’ otherwise

Since 1.10

[Function]clutter-content-invalidate (self <clutter-content>)
[Method]invalidate

Invalidates a <clutter-content>.

This function should be called by <clutter-content> implementations when they
change the way a the content should be painted regardless of the actor state.

content a <clutter-content>

Since 1.10

Chapter 27: ClutterDeformEffect 120

27 ClutterDeformEffect

A base class for effects deforming the geometry of an actor

27.1 Overview

<clutter-deform-effect> is an abstract class providing all the plumbing for creating
effects that result in the deformation of an actor’s geometry.

<clutter-deform-effect> uses offscreen buffers to render the contents of a <clutter-

actor> and then the Cogl vertex buffers API to submit the geometry to the GPU.

27.2 Implementing ClutterDeformEffect

Sub-classes of <clutter-deform-effect> should override the deform-vertex virtual func-
tion; this function is called on every vertex that needs to be deformed by the effect. Each
passed vertex is an in-out parameter that initially contains the position of the vertex and
should be modified according to a specific deformation algorithm.

<clutter-deform-effect> is available since Clutter 1.4

27.3 Usage

[Function]clutter-deform-effect-set-n-tiles
(self <clutter-deform-effect>) (x tiles unsigned-int)
(y tiles unsigned-int)

[Method]set-n-tiles
Sets the number of horizontal and vertical tiles to be used when applying the effect

More tiles allow a finer grained deformation at the expenses of computation

effect a <clutter-deform-effect>

x-tiles number of horizontal tiles

y-tiles number of vertical tiles

Since 1.4

[Function]clutter-deform-effect-get-n-tiles
(self <clutter-deform-effect>) ⇒ (x tiles unsigned-int)
(y tiles unsigned-int)

[Method]get-n-tiles
Retrieves the number of horizontal and vertical tiles used to sub-divide the actor’s
geometry during the effect

effect a <clutter-deform-effect>

x-tiles return location for the number of horizontal tiles, or ‘#f’.

y-tiles return location for the number of vertical tiles, or ‘#f’.

Since 1.4

Chapter 27: ClutterDeformEffect 121

[Function]clutter-deform-effect-invalidate
(self <clutter-deform-effect>)

[Method]invalidate
Invalidates the effect’s vertices and, if it is associated to an actor, it will queue a
redraw

effect a <clutter-deform-effect>

Since 1.4

Chapter 28: ClutterDesaturateEffect 122

28 ClutterDesaturateEffect

A desaturation effect

28.1 Overview

<clutter-desaturate-effect> is a sub-class of <clutter-effect> that desaturates the
color of an actor and its contents. The strenght of the desaturation effect is controllable
and animatable through the <"factor"> property.

<clutter-desaturate-effect> is available since Clutter 1.4

28.2 Usage

[Function]clutter-desaturate-effect-new (factor double)
⇒ (ret <clutter-effect>)

Creates a new <clutter-desaturate-effect> to be used with clutter-actor-add-

effect

factor the desaturation factor, between 0.0 and 1.0

ret the newly created <clutter-desaturate-effect> or ‘#f’

Since 1.4

Chapter 29: ClutterDeviceManager 123

29 ClutterDeviceManager

Maintains the list of input devices

29.1 Overview

<clutter-device-manager> is a singleton object, owned by Clutter, which maintains the
list of <clutter-input-device>s.

Depending on the backend used by Clutter it is possible to use the <"device-added">

and <"device-removed"> to monitor addition and removal of devices.

<clutter-device-manager> is available since Clutter 1.2

29.2 Usage

[Function]clutter-device-manager-list-devices
(self <clutter-device-manager>) ⇒ (ret gslist-of)

[Method]list-devices
Lists all currently registered input devices

device-manager
a <clutter-device-manager>

ret a newly allocated list of <clutter-input-device> objects. Use
g-slist-free to deallocate it when done.

Since 1.2

[Function]clutter-device-manager-peek-devices
(self <clutter-device-manager>) ⇒ (ret gslist-of)

[Method]peek-devices
Lists all currently registered input devices

device-manager
a <clutter-device-manager>

ret a pointer to the internal list of <clutter-input-device> objects. The
returned list is owned by the <clutter-device-manager> and should
never be modified or freed.

Since 1.2

[Function]clutter-device-manager-get-device
(self <clutter-device-manager>) (device id int)
⇒ (ret <clutter-input-device*>)

[Method]get-device
Retrieves the <clutter-input-device> with the given device-id

device-manager
a <clutter-device-manager>

device-id the integer id of a device

Chapter 29: ClutterDeviceManager 124

ret a <clutter-input-device> or ‘#f’. The returned device is owned by the
<clutter-device-manager> and should never be modified or freed.

Since 1.2

Chapter 30: ClutterDragAction 125

30 ClutterDragAction

Action enabling dragging on actors

30.1 Overview

<clutter-drag-action> is a sub-class of <clutter-action> that implements all the nec-
essary logic for dragging actors.

The simplest usage of <clutter-drag-action> consists in adding it to a <clutter-

actor> and setting it as reactive; for instance, the following code:

clutter_actor_add_action (actor, clutter_drag_action_new ());

clutter_actor_set_reactive (actor, TRUE);

will automatically result in the actor moving to follow the pointer whenever the pointer’s
button is pressed over the actor and moved across the stage.

The <clutter-drag-action> will signal the begin and the end of a dragging through
the <"drag-begin"> and <"drag-end"> signals, respectively. Each pointer motion during
a drag will also result in the <"drag-motion"> signal to be emitted.

It is also possible to set another <clutter-actor> as the dragged actor by calling
clutter-drag-action-set-drag-handle from within a handle of the <"drag-begin"> sig-
nal. The drag handle must be parented and exist between the emission of <"drag-begin">
and <"drag-end">.

The example program above allows dragging the rectangle around the stage using a
<clutter-drag-action>. When pressing the "Shift") key the actor that is going to be
dragged is a separate rectangle, and when the drag ends, the original rectangle will be
animated to the final coordinates.

<clutter-drag-action> is available since Clutter 1.4

30.2 Usage

[Function]clutter-drag-action-new ⇒ (ret <clutter-action>)
Creates a new <clutter-drag-action> instance

ret the newly created <clutter-drag-action>

Since 1.4

[Function]clutter-drag-action-set-drag-handle
(self <clutter-drag-action>) (handle <clutter-actor>)

[Method]set-drag-handle
Sets the actor to be used as the drag handle.

action a <clutter-drag-action>

handle a <clutter-actor>, or ‘#f’ to unset.

Since 1.4

Chapter 30: ClutterDragAction 126

[Function]clutter-drag-action-get-drag-handle
(self <clutter-drag-action>) ⇒ (ret <clutter-actor>)

[Method]get-drag-handle
Retrieves the drag handle set by clutter-drag-action-set-drag-handle

action a <clutter-drag-action>

ret a <clutter-actor>, used as the drag handle, or ‘#f’ if none was set.

Since 1.4

[Function]clutter-drag-action-set-drag-axis
(self <clutter-drag-action>) (axis <clutter-drag-axis>)

[Method]set-drag-axis
Restricts the dragging action to a specific axis

action a <clutter-drag-action>

axis the axis to constraint the dragging to

Since 1.4

[Function]clutter-drag-action-get-drag-axis
(self <clutter-drag-action>) ⇒ (ret <clutter-drag-axis>)

[Method]get-drag-axis
Retrieves the axis constraint set by clutter-drag-action-set-drag-axis

action a <clutter-drag-action>

ret the axis constraint

Since 1.4

Chapter 31: ClutterDropAction 127

31 ClutterDropAction

An action for drop targets

31.1 Overview

<clutter-drop-action> is a <clutter-action> that allows a <clutter-actor> imple-
mentation to control what happens when an actor dragged using a <clutter-drag-action>
crosses the target area or when a dragged actor is released (or "dropped") on the target
area.

A trivial use of <clutter-drop-action> consists in connecting to the <"drop"> signal
and handling the drop from there, for instance:

ClutterAction *action = clutter_drop_action ();

g_signal_connect (action, "drop", G_CALLBACK (on_drop), NULL);

clutter_actor_add_action (an_actor, action);

The <"can-drop"> can be used to control whether the <"drop"> signal is going to be
emitted; returning ‘#f’ from a handler connected to the <"can-drop"> signal will cause the
<"drop"> signal to be skipped when the input device button is released.

It’s important to note that <clutter-drop-action> will only work with actors dragged
using <clutter-drag-action>.

<clutter-drop-action> is available since Clutter 1.8

31.2 Usage

[Function]clutter-drop-action-new ⇒ (ret <clutter-action>)
Creates a new <clutter-drop-action>.

Use clutter-actor-add-action to add the action to a <clutter-actor>.

ret the newly created <clutter-drop-action>

Since 1.8

Chapter 32: ClutterEffect 128

32 ClutterEffect

Base class for actor effects

32.1 Overview

The <clutter-effect> class provides a default type and API for creating effects for generic
actors.

Effects are a <clutter-actor-meta> sub-class that modify the way an actor is painted
in a way that is not part of the actor’s implementation.

Effects should be the preferred way to affect the paint sequence of an actor without
sub-classing the actor itself and overriding the <"paint"> virtual function.

32.2 Implementing a ClutterEffect

Creating a sub-class of <clutter-effect> requires overriding the paint method. The im-
plementation of the function should look something like this:

void effect_paint (ClutterEffect *effect, ClutterEffectPaintFlags flags)

{

/* Set up initialisation of the paint such as binding a

CoglOffscreen or other operations */

/* Chain to the next item in the paint sequence. This will either call

paint on the next effect or just paint the actor if this is

the last effect. */

ClutterActor *actor =

clutter_actor_meta_get_actor (CLUTTER_ACTOR_META (effect));

clutter_actor_continue_paint (actor);

/* perform any cleanup of state, such as popping the

CoglOffscreen */

}

The effect can optionally avoid calling clutter-actor-continue-paint to skip any
further stages of the paint sequence. This is useful for example if the effect contains a
cached image of the actor. In that case it can optimise painting by avoiding the actor paint
and instead painting the cached image. The ‘CLUTTER_EFFECT_PAINT_ACTOR_DIRTY’ flag is
useful in this case. Clutter will set this flag when a redraw has been queued on the actor
since it was last painted. The effect can use this information to decide if the cached image
is still valid.

The paint virtual was added in Clutter 1.8. Prior to that there were two separate
functions as follows.

• pre-paint, which is called before painting the <clutter-actor>.

• post-paint, which is called after painting the <clutter-actor>.

Chapter 32: ClutterEffect 129

The pre-paint function was used to set up the <clutter-effect> right before the
<clutter-actor>’s paint sequence. This function can fail, and return ‘#f’; in that case, no
post-paint invocation will follow.

The post-paint function was called after the <clutter-actor>’s paint sequence.

With these two functions it is not possible to skip the rest of the paint sequence. The
default implementation of the paint virtual calls pre-paint, clutter-actor-continue-
paint and then post-paint so that existing actors that aren’t using the paint virtual will
continue to work. New actors using the paint virtual do not need to implement pre or post
paint.

The example below creates two rectangles: one will be painted "behind" the actor, while
another will be painted "on top" of the actor. The set-actor implementation will create
the two materials used for the two different rectangles; the paint function will paint the
first material using cogl-rectangle, before continuing and then it will paint paint the
second material after.

typedef struct {

ClutterEffect parent_instance;

CoglHandle rect_1;

CoglHandle rect_2;

} MyEffect;

typedef struct _ClutterEffectClass MyEffectClass;

G_DEFINE_TYPE (MyEffect, my_effect, CLUTTER_TYPE_EFFECT);

static void

my_effect_set_actor (ClutterActorMeta *meta,

ClutterActor *actor)

{

MyEffect *self = MY_EFFECT (meta);

/* Clear the previous state */

if (self->rect_1)

{

cogl_handle_unref (self->rect_1);

self->rect_1 = NULL;

}

if (self->rect_2)

{

cogl_handle_unref (self->rect_2);

self->rect_2 = NULL;

}

/* Maintain a pointer to the actor *

Chapter 32: ClutterEffect 130

self->actor = actor;

/* If we’ve been detached by the actor then we should

* just bail out here

*/

if (self->actor == NULL)

return;

/* Create a red material */

self->rect_1 = cogl_material_new ();

cogl_material_set_color4f (self->rect_1, 1.0, 0.0, 0.0, 1.0);

/* Create a green material */

self->rect_2 = cogl_material_new ();

cogl_material_set_color4f (self->rect_2, 0.0, 1.0, 0.0, 1.0);

}

static gboolean

my_effect_paint (ClutterEffect *effect)

{

MyEffect *self = MY_EFFECT (effect);

gfloat width, height;

clutter_actor_get_size (self->actor, &width, &height);

/* Paint the first rectangle in the upper left quadrant */

cogl_set_source (self->rect_1);

cogl_rectangle (0, 0, width / 2, height / 2);

/* Continue to the rest of the paint sequence */

clutter_actor_continue_paint (self->actor);

/* Paint the second rectangle in the lower right quadrant */

cogl_set_source (self->rect_2);

cogl_rectangle (width / 2, height / 2, width, height);

}

static void

my_effect_class_init (MyEffectClass *klass)

{

ClutterActorMetaClas *meta_class = CLUTTER_ACTOR_META_CLASS (klass);

meta_class->set_actor = my_effect_set_actor;

klass->paint = my_effect_paint;

}

Chapter 32: ClutterEffect 131

<clutter-effect> is available since Clutter 1.4

32.3 Usage

[Function]clutter-effect-queue-repaint (self <clutter-effect>)
[Method]queue-repaint

Queues a repaint of the effect. The effect can detect when the paint
method is called as a result of this function because it will not have the
‘CLUTTER_EFFECT_PAINT_ACTOR_DIRTY’ flag set. In that case the effect is free to
assume that the actor has not changed its appearance since the last time it was
painted so it doesn’t need to call clutter-actor-continue-paint if it can draw a
cached image. This is mostly intended for effects that are using a ‘CoglOffscreen’
to redirect the actor (such as ‘ClutterOffscreenEffect’). In that case the effect
can save a bit of rendering time by painting the cached texture without causing the
entire actor to be painted.

This function can be used by effects that have their own animatable parameters. For
example, an effect which adds a varying degree of a red tint to an actor by redirecting
it through a CoglOffscreen might have a property to specify the level of tint. When
this value changes, the underlying actor doesn’t need to be redrawn so the effect can
call clutter-effect-queue-repaint to make sure the effect is repainted.

Note however that modifying the position of the parent of an actor may
change the appearance of the actor because its transformation matrix would
change. In this case a redraw wouldn’t be queued on the actor itself so the
‘CLUTTER_EFFECT_PAINT_ACTOR_DIRTY’ would still not be set. The effect can detect
this case by keeping track of the last modelview matrix that was used to render the
actor and veryifying that it remains the same in the next paint.

Any other effects that are layered on top of the passed in effect will still be passed
the ‘CLUTTER_EFFECT_PAINT_ACTOR_DIRTY’ flag. If anything queues a redraw on the
actor without specifying an effect or with an effect that is lower in the chain of effects
than this one then that will override this call. In that case this effect will instead be
called with the ‘CLUTTER_EFFECT_PAINT_ACTOR_DIRTY’ flag set.

effect A <clutter-effect> which needs redrawing

Since 1.8

Chapter 33: Events 132

33 Events

User and window system events

33.1 Overview

Windowing events handled by Clutter.

The events usually come from the windowing backend, but can also be synthesized by
Clutter itself or by the application code.

33.2 Usage

[Function]clutter-event-new (type <clutter-event-type>)
⇒ (ret <clutter-event>)

Creates a new <clutter-event> of the specified type.

type The type of event.

ret A newly allocated <clutter-event>.

[Function]clutter-event-type (self <clutter-event>)
⇒ (ret <clutter-event-type>)

[Method]type
Retrieves the type of the event.

event a <clutter-event>

ret a <clutter-event-type>

[Function]clutter-event-set-coords (self <clutter-event>) (x float)
(y float)

[Method]set-coords
Sets the coordinates of the event.

event a <clutter-event>

x the X coordinate of the event

y the Y coordinate of the event

Since 1.8

[Function]clutter-event-get-coords (self <clutter-event>) ⇒ (x float)
(y float)

[Method]get-coords
Retrieves the coordinates of event and puts them into x and y.

event a <clutter-event>

x return location for the X coordinate, or ‘#f’.

y return location for the Y coordinate, or ‘#f’.

Since 0.4

Chapter 33: Events 133

[Function]clutter-event-set-state (self <clutter-event>)
(state <clutter-modifier-type>)

[Method]set-state
Sets the modifier state of the event.

event a <clutter-event>

state the modifier state to set

Since 1.8

[Function]clutter-event-get-state (self <clutter-event>)
⇒ (ret <clutter-modifier-type>)

[Method]get-state
Retrieves the modifier state of the event.

event a <clutter-event>

ret the modifier state parameter, or 0

Since 0.4

[Function]clutter-event-set-time (self <clutter-event>)
(time unsigned-int32)

[Method]set-time
Sets the time of the event.

event a <clutter-event>

time the time of the event

Since 1.8

[Function]clutter-event-get-time (self <clutter-event>)
⇒ (ret unsigned-int32)

[Method]get-time
Retrieves the time of the event.

event a <clutter-event>

ret the time of the event, or ‘CLUTTER_CURRENT_TIME’

Since 0.4

[Function]clutter-event-set-source (self <clutter-event>)
(actor <clutter-actor>)

[Method]set-source
Sets the source <clutter-actor> of event.

event a <clutter-event>

actor a <clutter-actor>, or ‘#f’.

Since 1.8

Chapter 33: Events 134

[Function]clutter-event-get-source (self <clutter-event>)
⇒ (ret <clutter-actor>)

[Method]get-source
Retrieves the source <clutter-actor> the event originated from, or NULL if the
event has no source.

event a <clutter-event>

ret a <clutter-actor>.

Since 0.6

[Function]clutter-event-set-stage (self <clutter-event>)
(stage <clutter-stage>)

[Method]set-stage
Sets the source <clutter-stage> of the event.

event a <clutter-event>

stage a <clutter-stage>, or ‘#f’.

Since 1.8

[Function]clutter-event-get-stage (self <clutter-event>)
⇒ (ret <clutter-stage>)

[Method]get-stage
Retrieves the source <clutter-stage> the event originated for, or ‘#f’ if the event
has no stage.

event a <clutter-event>

ret a <clutter-stage>.

Since 0.8

[Function]clutter-event-set-flags (self <clutter-event>)
(flags <clutter-event-flags>)

[Method]set-flags
Sets the <clutter-event-flags> of event

event a <clutter-event>

flags a binary OR of <clutter-event-flags> values

Since 1.8

[Function]clutter-event-get-flags (self <clutter-event>)
⇒ (ret <clutter-event-flags>)

[Method]get-flags
Retrieves the <clutter-event-flags> of event

event a <clutter-event>

ret the event flags

Since 1.0

Chapter 33: Events 135

[Function]clutter-event-get-event-sequence (self <clutter-event>)
⇒ (ret <clutter-event-sequence*>)

[Method]get-event-sequence
Retrieves the <clutter-event-sequence> of event.

event a <clutter-event> of type ‘CLUTTER_TOUCH_BEGIN’, ‘CLUTTER_TOUCH_UPDATE’,
‘CLUTTER_TOUCH_END’, or ‘CLUTTER_TOUCH_CANCEL’

ret the event sequence, or ‘#f’.

Since 1.10

[Function]clutter-event-get ⇒ (ret <clutter-event>)
Pops an event off the event queue. Applications should not need to call this.

ret A <clutter-event> or NULL if queue empty

Since 0.4

[Function]clutter-event-peek ⇒ (ret <clutter-event>)
Returns a pointer to the first event from the event queue but does not remove it.

ret A <clutter-event> or NULL if queue empty.

Since 0.4

[Function]clutter-event-put (self <clutter-event>)
[Method]put

Puts a copy of the event on the back of the event queue. The event will have the
‘CLUTTER_EVENT_FLAG_SYNTHETIC’ flag set. If the source is set event signals will be
emitted for this source and capture/bubbling for its ancestors. If the source is not
set it will be generated by picking or use the actor that currently has keyboard focus

event a <clutter-event>

Since 0.6

[Function]clutter-events-pending ⇒ (ret bool)
Checks if events are pending in the event queue.

ret TRUE if there are pending events, FALSE otherwise.

Since 0.4

[Function]clutter-event-set-button (self <clutter-event>)
(button unsigned-int32)

[Method]set-button
Sets the button number of event

event a <clutter-event> or type ‘CLUTTER_BUTTON_PRESS’ or of type
‘CLUTTER_BUTTON_RELEASE’

button the button number

Since 1.8

Chapter 33: Events 136

[Function]clutter-event-get-button (self <clutter-event>)
⇒ (ret unsigned-int32)

[Method]get-button
Retrieves the button number of event

event a <clutter-event> of type ‘CLUTTER_BUTTON_PRESS’ or of type
‘CLUTTER_BUTTON_RELEASE’

ret the button number

Since 1.0

[Function]clutter-event-get-click-count (self <clutter-event>)
⇒ (ret unsigned-int)

[Method]get-click-count
Retrieves the number of clicks of event

event a <clutter-event> of type ‘CLUTTER_BUTTON_PRESS’ or of type
‘CLUTTER_BUTTON_RELEASE’

ret the click count

Since 1.0

[Function]clutter-event-set-key-symbol (self <clutter-event>)
(key sym unsigned-int)

[Method]set-key-symbol
Sets the key symbol of event.

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or
‘CLUTTER_KEY_RELEASE’

key-sym the key symbol representing the key

Since 1.8

[Function]clutter-event-get-key-symbol (self <clutter-event>)
⇒ (ret unsigned-int)

[Method]get-key-symbol
Retrieves the key symbol of event

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or of type
‘CLUTTER_KEY_RELEASE’

ret the key symbol representing the key

Since 1.0

[Function]clutter-event-set-key-code (self <clutter-event>)
(key code unsigned-int16)

[Method]set-key-code
Sets the keycode of the event.

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or
‘CLUTTER_KEY_RELEASE’

Chapter 33: Events 137

key-code the keycode representing the key

Since 1.8

[Function]clutter-event-get-key-code (self <clutter-event>)
⇒ (ret unsigned-int16)

[Method]get-key-code
Retrieves the keycode of the key that caused event

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or of type
‘CLUTTER_KEY_RELEASE’

ret The keycode representing the key

Since 1.0

[Function]clutter-event-set-key-unicode (self <clutter-event>)
(key unicode unsigned-int32)

[Method]set-key-unicode
Sets the Unicode value of event.

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or
‘CLUTTER_KEY_RELEASE’

key-unicode
the Unicode value representing the key

Since 1.8

[Function]clutter-event-get-key-unicode (self <clutter-event>)
⇒ (ret unsigned-int32)

[Method]get-key-unicode
Retrieves the unicode value for the key that caused keyev.

event a <clutter-event> of type ‘CLUTTER_KEY_PRESS’ or
‘CLUTTER_KEY_RELEASE’

ret The unicode value representing the key

[Function]clutter-keysym-to-unicode (keyval unsigned-int)
⇒ (ret unsigned-int32)

Converts keyval from a Clutter key symbol to the corresponding ISO10646 (Unicode)
character.

keyval a key symbol

ret a Unicode character, or 0 if there is no corresponding character.

[Function]clutter-unicode-to-keysym (wc unsigned-int32)
⇒ (ret unsigned-int)

Convert from a ISO10646 character to a key symbol.

wc a ISO10646 encoded character

ret the corresponding Clutter key symbol, if one exists. or, if there is no
corresponding symbol, wc | 0x01000000

Since 1.10

Chapter 33: Events 138

[Function]clutter-event-set-related (self <clutter-event>)
(actor <clutter-actor>)

[Method]set-related
Sets the related actor of a crossing event

event a <clutter-event> of type ‘CLUTTER_ENTER’ or ‘CLUTTER_LEAVE’

actor a <clutter-actor> or ‘#f’.

Since 1.8

[Function]clutter-event-get-related (self <clutter-event>)
⇒ (ret <clutter-actor>)

[Method]get-related
Retrieves the related actor of a crossing event.

event a <clutter-event> of type ‘CLUTTER_ENTER’ or of type ‘CLUTTER_LEAVE’

ret the related <clutter-actor>, or ‘#f’.

Since 1.0

[Function]clutter-event-set-scroll-direction (self <clutter-event>)
(direction <clutter-scroll-direction>)

[Method]set-scroll-direction
Sets the direction of the scrolling of event

event a <clutter-event>

direction the scrolling direction

Since 1.8

[Function]clutter-event-get-scroll-delta (self <clutter-event>)
⇒ (dx double) (dy double)

[Method]get-scroll-delta
Retrieves the precise scrolling information of event.

The event has to have a <clutter-scroll-event.direction> value of
‘CLUTTER_SCROLL_SMOOTH’.

event a <clutter-event> of type ‘CLUTTER_SCROLL’

dx return location for the delta on the horizontal axis.

dy return location for the delta on the vertical axis.

Since 1.10

[Function]clutter-event-set-scroll-delta (self <clutter-event>)
(dx double) (dy double)

[Method]set-scroll-delta
Sets the precise scrolling information of event.

event a <clutter-event> of type ‘CLUTTER_SCROLL’

dx delta on the horizontal axis

dy delta on the vertical axis

Since 1.10

Chapter 33: Events 139

[Function]clutter-event-set-device (self <clutter-event>)
(device <clutter-input-device*>)

[Method]set-device
Sets the device for event.

event a <clutter-event>

device a <clutter-input-device>, or ‘#f’.

Since 1.6

[Function]clutter-event-get-device (self <clutter-event>)
⇒ (ret <clutter-input-device*>)

[Method]get-device
Retrieves the <clutter-input-device> for the event.

The <clutter-input-device> structure is completely opaque and should be cast to
the platform-specific implementation.

event a <clutter-event>

ret the <clutter-input-device> or ‘#f’. The returned device is owned by
the <clutter-event> and it should not be unreferenced.

Since 1.0

[Function]clutter-event-set-source-device (self <clutter-event>)
(device <clutter-input-device*>)

[Method]set-source-device
Sets the source <clutter-input-device> for event.

The <clutter-event> must have been created using clutter-event-new.

event a <clutter-event>

device a <clutter-input-device>.

Since 1.8

[Function]clutter-event-get-source-device (self <clutter-event>)
⇒ (ret <clutter-input-device*>)

[Method]get-source-device
Retrieves the hardware device that originated the event.

If you need the virtual device, use clutter-event-get-device.

If no hardware device originated this event, this function will return the same device
as clutter-event-get-device.

event a <clutter-event>

ret a pointer to a <clutter-input-device> or ‘#f’.

Since 1.6

[Function]clutter-event-get-device-id (self <clutter-event>) ⇒ (ret int)
[Method]get-device-id

Retrieves the events device id if set.

Chapter 33: Events 140

event a clutter event

ret A unique identifier for the device or -1 if the event has no specific device
set.

[Function]clutter-event-get-device-type (self <clutter-event>)
⇒ (ret <clutter-input-device-type>)

[Method]get-device-type
Retrieves the type of the device for event

event a <clutter-event>

ret the <clutter-input-device-type> for the device, if any is set

Since 1.0

[Function]clutter-get-current-event-time ⇒ (ret unsigned-int32)
Retrieves the timestamp of the last event, if there is an event or if the event has a
timestamp.

ret the event timestamp, or ‘CLUTTER_CURRENT_TIME’

Since 1.0

[Function]clutter-get-current-event ⇒ (ret <clutter-event>)
If an event is currently being processed, return that event. This function is intended
to be used to access event state that might not be exposed by higher-level widgets.
For example, to get the key modifier state from a Button ’clicked’ event.

ret The current ClutterEvent, or ‘#f’ if none.

Since 1.2

Chapter 34: Features 141

34 Features

Run-time detection of Clutter features

34.1 Overview

Parts of Clutter depend on the underlying platform, including the capabilities of the backend
used and the OpenGL features exposed through the Clutter and COGL API.

It is possible to ask whether Clutter has support for specific features at run-time.

See also cogl-get-features and <cogl-feature-flags>

34.2 Usage

[Function]clutter-feature-available (feature <clutter-feature-flags>)
⇒ (ret bool)

Checks whether feature is available. feature can be a logical OR of <clutter-

feature-flags>.

feature a <clutter-feature-flags>

ret ‘#t’ if a feature is available

Since 0.1.1

[Function]clutter-feature-get-all ⇒ (ret <clutter-feature-flags>)
Returns all the supported features.

ret a logical OR of all the supported features.

Since 0.1.1

Chapter 35: ClutterFixedLayout 142

35 ClutterFixedLayout

A fixed layout manager

35.1 Overview

<clutter-fixed-layout> is a layout manager implementing the same layout policies as
<clutter-group>.

<clutter-fixed-layout> is available since Clutter 1.2

35.2 Usage

[Function]clutter-fixed-layout-new ⇒ (ret <clutter-layout-manager>)
Creates a new <clutter-fixed-layout>

ret the newly created <clutter-fixed-layout>

Since 1.2

Chapter 36: ClutterFlowLayout 143

36 ClutterFlowLayout

A reflowing layout manager

36.1 Overview

<clutter-flow-layout> is a layout manager which implements the following policy:

•
•
•
•

the preferred natural size depends on the value of the <"orientation"> property; the
layout will try to maintain all its children on a single row or column;

if either the width or the height allocated are smaller than the preferred ones, the layout
will wrap; in this case, the preferred height or width, respectively, will take into account
the amount of columns and rows;

each line (either column or row) in reflowing will have the size of the biggest cell on that
line; if the <"homogeneous"> property is set to ‘#f’ the actor will be allocated within that
area, and if set to ‘#t’ instead the actor will be given exactly that area;

the size of the columns or rows can be controlled for both minimum and maximum; the
spacing can also be controlled in both columns and rows.

(The missing figure, flow-layout-image

The image shows a <clutter-flow-layout> with the <"orientation"> propert set to
‘CLUTTER_FLOW_HORIZONTAL’.

<clutter-flow-layout> is available since Clutter 1.2

36.2 Usage

[Function]clutter-flow-layout-new
(orientation <clutter-flow-orientation>)
⇒ (ret <clutter-layout-manager>)

Creates a new <clutter-flow-layout> with the given orientation

orientation
the orientation of the flow layout

ret the newly created <clutter-flow-layout>

Since 1.2

[Function]clutter-flow-layout-set-homogeneous
(self <clutter-flow-layout>) (homogeneous bool)

[Method]set-homogeneous
Sets whether the layout should allocate the same space for each child

layout a <clutter-flow-layout>

Chapter 36: ClutterFlowLayout 144

homogeneous
whether the layout should be homogeneous or not

Since 1.2

[Function]clutter-flow-layout-get-homogeneous
(self <clutter-flow-layout>) ⇒ (ret bool)

[Method]get-homogeneous
Retrieves whether the layout is homogeneous

layout a <clutter-flow-layout>

ret ‘#t’ if the <clutter-flow-layout> is homogeneous

Since 1.2

[Function]clutter-flow-layout-set-orientation
(self <clutter-flow-layout>)
(orientation <clutter-flow-orientation>)

[Method]set-orientation
Sets the orientation of the flow layout

The orientation controls the direction used to allocate the children: either horizontally
or vertically. The orientation also controls the direction of the overflowing

layout a <clutter-flow-layout>

orientation
the orientation of the layout

Since 1.2

[Function]clutter-flow-layout-set-row-spacing
(self <clutter-flow-layout>) (spacing float)

[Method]set-row-spacing
Sets the spacing between rows, in pixels

layout a <clutter-flow-layout>

spacing the space between rows

Since 1.2

[Function]clutter-flow-layout-get-row-spacing
(self <clutter-flow-layout>) ⇒ (ret float)

[Method]get-row-spacing
Retrieves the spacing between rows

layout a <clutter-flow-layout>

ret the spacing between rows of the <clutter-flow-layout>, in pixels

Since 1.2

Chapter 36: ClutterFlowLayout 145

[Function]clutter-flow-layout-set-row-height
(self <clutter-flow-layout>) (min height float) (max height float)

[Method]set-row-height
Sets the minimum and maximum heights that a row can have

layout a <clutter-flow-layout>

min-height
the minimum height of a row

max-height
the maximum height of a row

Since 1.2

[Function]clutter-flow-layout-get-row-height
(self <clutter-flow-layout>) ⇒ (min height float) (max height float)

[Method]get-row-height
Retrieves the minimum and maximum row heights

layout a <clutter-flow-layout>

min-height
return location for the minimum row height, or ‘#f’.

max-height
return location for the maximum row height, or ‘#f’.

Since 1.2

Chapter 37: ClutterGestureAction 146

37 ClutterGestureAction

Action for gesture gestures

37.1 Overview

<clutter-gesture-action> is a sub-class of <clutter-action> that implements
the logic for recognizing gesture gestures. It listens for low level events such as
<clutter-button-event> and <clutter-motion-event> on the stage to raise the
<"gesture-begin">, <"gesture-progress">, and * <"gesture-end"> signals.

To use <clutter-gesture-action> you just need to apply it to a <clutter-actor>

using clutter-actor-add-action and connect to the signals:

ClutterAction *action = clutter_gesture_action_new ();

clutter_actor_add_action (actor, action);

g_signal_connect (action, "gesture-begin", G_CALLBACK (on_gesture_begin), NULL);

g_signal_connect (action, "gesture-progress", G_CALLBACK (on_gesture_progress), NULL);

g_signal_connect (action, "gesture-end", G_CALLBACK (on_gesture_end), NULL);

37.2 Usage

[Function]clutter-gesture-action-new ⇒ (ret <clutter-action>)
Creates a new <clutter-gesture-action> instance.

ret the newly created <clutter-gesture-action>

Since 1.8

Chapter 38: ClutterImage 147

38 ClutterImage

Image data content

38.1 Overview

<clutter-image> is a <clutter-content> implementation that displays image data.

<clutter-image> is available since Clutter 1.10.

38.2 Usage

[Function]clutter-image-new ⇒ (ret <clutter-content>)
Creates a new <clutter-image> instance.

ret the newly created <clutter-image> instance. Use g-object-unref

when done.

Since 1.10

Chapter 39: ClutterInputDevice 148

39 ClutterInputDevice

An input device managed by Clutter

39.1 Overview

<clutter-input-device> represents an input device known to Clutter.

The <clutter-input-device> class holds the state of the device, but its contents are
usually defined by the Clutter backend in use.

39.2 Usage

[Function]clutter-input-device-get-device-id
(self <clutter-input-device*>) ⇒ (ret int)

Retrieves the unique identifier of device

device a <clutter-input-device>

ret the identifier of the device

Since 1.0

[Function]clutter-input-device-get-has-cursor
(self <clutter-input-device*>) ⇒ (ret bool)

Retrieves whether device has a pointer that follows the device motion.

device a <clutter-input-device>

ret ‘#t’ if the device has a cursor

Since 1.6

[Function]clutter-input-device-set-enabled
(self <clutter-input-device*>) (enabled bool)

Enables or disables a <clutter-input-device>.

Only devices with a <"device-mode"> property set to ‘CLUTTER_INPUT_MODE_SLAVE’
or ‘CLUTTER_INPUT_MODE_FLOATING’ can be disabled.

device a <clutter-input-device>

enabled ‘#t’ to enable the device

Since 1.6

[Function]clutter-input-device-get-enabled
(self <clutter-input-device*>) ⇒ (ret bool)

Retrieves whether device is enabled.

device a <clutter-input-device>

ret ‘#t’ if the device is enabled

Since 1.6

Chapter 39: ClutterInputDevice 149

[Function]clutter-input-device-get-n-keys
(self <clutter-input-device*>) ⇒ (ret unsigned-int)

Retrieves the number of keys registered for device.

device a <clutter-input-device>

ret the number of registered keys

Since 1.6

[Function]clutter-input-device-set-key (self <clutter-input-device*>)
(index unsigned-int) (keyval unsigned-int)
(modifiers <clutter-modifier-type>)

Sets the keyval and modifiers at the given index for device.

Clutter will use the keyval and modifiers set when filling out an event coming from
the same input device.

device a <clutter-input-device>

index the index of the key

keyval the keyval

modifiers a bitmask of modifiers

Since 1.6

[Function]clutter-input-device-get-key (self <clutter-input-device*>)
(index unsigned-int) ⇒ (ret bool) (keyval unsigned-int)
(modifiers <clutter-modifier-type>)

Retrieves the key set using clutter-input-device-set-key

device a <clutter-input-device>

index the index of the key

keyval return location for the keyval at index.

modifiers return location for the modifiers at index.

ret ‘#t’ if a key was set at the given index

Since 1.6

[Function]clutter-input-device-get-n-axes
(self <clutter-input-device*>) ⇒ (ret unsigned-int)

Retrieves the number of axes available on device.

device a <clutter-input-device>

ret the number of axes on the device

Since 1.6

[Function]clutter-input-device-get-axis (self <clutter-input-device*>)
(index unsigned-int) ⇒ (ret <clutter-input-axis>)

Retrieves the type of axis on device at the given index.

Chapter 39: ClutterInputDevice 150

device a <clutter-input-device>

index the index of the axis

ret the axis type

Since 1.6

[Function]clutter-input-device-get-axis-value
(self <clutter-input-device*>) (axis <clutter-input-axis>)
⇒ (ret bool) (axes double) (value double)

Extracts the value of the given axis of a <clutter-input-device> from an array of
axis values.

An example of typical usage for this function is:

ClutterInputDevice *device = clutter_event_get_device (event);

gdouble *axes = clutter_event_get_axes (event, NULL);

gdouble pressure_value = 0;

clutter_input_device_get_axis_value (device, axes,

CLUTTER_INPUT_AXIS_PRESSURE,

&pressure_value);

device a <clutter-input-device>

axes an array of axes values, typically coming from clutter-event-get-axes.

axis the axis to extract

value return location for the axis value.

ret ‘#t’ if the value was set, and ‘#f’ otherwise

Since 1.6

[Function]clutter-input-device-grab (self <clutter-input-device*>)
(actor <clutter-actor>)

Acquires a grab on actor for the given device.

Any event coming from device will be delivered to actor, bypassing the usual event
delivery mechanism, until the grab is released by calling clutter-input-device-

ungrab.

The grab is client-side: even if the windowing system used by the Clutter backend
has the concept of "device grabs", Clutter will not use them.

Only <clutter-input-device> of types ‘CLUTTER_POINTER_DEVICE’ and
‘CLUTTER_KEYBOARD_DEVICE’ can hold a grab.

device a <clutter-input-device>

actor a <clutter-actor>

Since 1.10

Chapter 39: ClutterInputDevice 151

[Function]clutter-input-device-ungrab (self <clutter-input-device*>)
Releases the grab on the device, if one is in place.

device a <clutter-input-device>

Since 1.10

Chapter 40: Value intervals 152

40 Value intervals

An object holding an interval of two values

40.1 Overview

<clutter-interval> is a simple object that can hold two values defining an interval.
<clutter-interval> can hold any value that can be enclosed inside a <gvalue>.

Once a <clutter-interval> for a specific <g-type> has been instantiated the <"value-
type"> property cannot be changed anymore.

<clutter-interval> starts with a floating reference; this means that any object taking
a reference on a <clutter-interval> instance should also take ownership of the interval
by using g-object-ref-sink.

<clutter-interval> is used by <clutter-animation> to define the interval of values
that an implicit animation should tween over.

<clutter-interval> can be subclassed to override the validation and value computa-
tion.

<clutter-interval> is available since Clutter 1.0

40.2 Usage

[Function]clutter-interval-new-with-values (gtype <gtype>)
(initial <gvalue>) (final <gvalue>) ⇒ (ret <clutter-interval>)

Creates a new <clutter-interval> of type gtype, between initial and final.

This function is useful for language bindings.

gtype the type of the values in the interval

initial a <gvalue> holding the initial value of the interval

final a <gvalue> holding the final value of the interval

ret the newly created <clutter-interval>

Since 1.0

[Function]clutter-interval-clone (self <clutter-interval>)
⇒ (ret <clutter-interval>)

[Method]clone
Creates a copy of interval.

interval a <clutter-interval>

ret the newly created <clutter-interval>.

Since 1.0

[Function]clutter-interval-get-value-type (self <clutter-interval>)
⇒ (ret <gtype>)

[Method]get-value-type
Retrieves the <g-type> of the values inside interval.

Chapter 40: Value intervals 153

interval a <clutter-interval>

ret the type of the value, or G TYPE INVALID

Since 1.0

[Function]clutter-interval-set-initial-value (self <clutter-interval>)
(value <gvalue>)

[Method]set-initial-value
Sets the initial value of interval to value. The value is copied inside the <clutter-

interval>.

Rename to: clutter interval set initial

interval a <clutter-interval>

value a <gvalue>

Since 1.0

[Function]clutter-interval-get-initial-value (self <clutter-interval>)
⇒ (ret <gvalue>)

[Method]get-initial-value
Retrieves the initial value of interval and copies it into value.

The passed <gvalue> must be initialized to the value held by the <clutter-

interval>.

interval a <clutter-interval>

value a <gvalue>.

Since 1.0

[Function]clutter-interval-set-final-value (self <clutter-interval>)
(value <gvalue>)

[Method]set-final-value
Sets the final value of interval to value. The value is copied inside the <clutter-

interval>.

Rename to: clutter interval set final

interval a <clutter-interval>

value a <gvalue>

Since 1.0

[Function]clutter-interval-get-final-value (self <clutter-interval>)
⇒ (ret <gvalue>)

[Method]get-final-value
Retrieves the final value of interval and copies it into value.

The passed <gvalue> must be initialized to the value held by the <clutter-

interval>.

interval a <clutter-interval>

value a <gvalue>.

Since 1.0

Chapter 40: Value intervals 154

[Function]clutter-interval-validate (self <clutter-interval>)
(pspec <gparam>) ⇒ (ret bool)

[Method]validate
Validates the initial and final values of interval against a <gparam>.

interval a <clutter-interval>

pspec a <gparam>

ret ‘#t’ if the <clutter-interval> is valid, ‘#f’ otherwise

Since 1.0

[Function]clutter-interval-compute (self <clutter-interval>)
(factor double) ⇒ (ret <gvalue>)

[Method]compute
Computes the value between the interval boundaries given the progress factor

Unlike clutter-interval-compute-value, this function will return a const pointer
to the computed value

You should use this function if you immediately pass the computed value to another
function that makes a copy of it, like g-object-set-property

interval a <clutter-interval>

factor the progress factor, between 0 and 1

ret a pointer to the computed value, or ‘#f’ if the computation was not
successfull.

Since 1.4

Chapter 41: ClutterLayoutManager 155

41 ClutterLayoutManager

Layout managers base class

41.1 Overview

<clutter-layout-manager> is a base abstract class for layout managers. A layout man-
ager implements the layouting policy for a composite or a container actor: it controls the
preferred size of the actor to which it has been paired, and it controls the allocation of its
children.

Any composite or container <clutter-actor> subclass can delegate the layouting of
its children to a <clutter-layout-manager>. Clutter provides a generic container using
<clutter-layout-manager> called <clutter-box>.

Clutter provides some simple <clutter-layout-manager> sub-classes, like <clutter-

flow-layout> and <clutter-bin-layout>.

41.2 Using a Layout Manager inside an Actor

In order to use a <clutter-layout-manager> inside a <clutter-actor> sub-class you
should invoke clutter-layout-manager-get-preferred-width inside the (structname
"ClutterActor") ::get-preferred-width virtual function and clutter-layout-manager-

get-preferred-height inside the function implementations. You should also call
clutter-layout-manager-allocate inside the implementation of the

In order to receive notifications for changes in the layout manager policies you should
also connect to the <"layout-changed"> signal and queue a relayout on your actor. The
following code should be enough if the actor does not need to perform specific operations
whenever a layout manager changes:

g_signal_connect_swapped (layout_manager,

"layout-changed",

G_CALLBACK (clutter_actor_queue_relayout),

actor);

41.3 Implementing a ClutterLayoutManager

The implementation of a layout manager does not differ from the implementation of the
size requisition and allocation bits of <clutter-actor>, so you should read the relative
documentation for subclassing ClutterActor.

The layout manager implementation can hold a back pointer to the <clutter-

container> by implementing the set-container virtual function. The layout manager
should not hold a real reference (i.e. call g-object-ref) on the container actor, to avoid
reference cycles.

If a layout manager has properties affecting the layout policies then it should emit
the <"layout-changed"> signal on itself by using the clutter-layout-manager-layout-
changed function whenever one of these properties changes.

Chapter 41: ClutterLayoutManager 156

41.4 Animating a ClutterLayoutManager

A layout manager is used to let a <clutter-container> take complete ownership over the
layout (that is: the position and sizing) of its children; this means that using the Clutter
animation API, like clutter-actor-animate, to animate the position and sizing of a child
of a layout manager it is not going to work properly, as the animation will automatically
override any setting done by the layout manager itself.

It is possible for a <clutter-layout-manager> sub-class to animate its children layout
by using the base class animation support. The <clutter-layout-manager> animation
support consists of three virtual functions: begin-animation, get-animation-progress
and end-animation.

get-animation-progress

end-animation

This virtual function is invoked when the layout manager should begin an animation.
The implementation should set up the state for the animation and create the ancillary ob-
jects for animating the layout. The default implementation creates a <clutter-timeline>

for the given duration and a <clutter-alpha> binding the timeline to the given easing
mode. This function returns a <clutter-alpha> which should be used to control the ani-
mation from the caller perspective.

This virtual function should be invoked when animating a layout manager. It returns
the progress of the animation, using the same semantics as the <"alpha"> value.

This virtual function is invoked when the animation of a layout manager ends, and it
is meant to be used for bookkeeping the objects created in the begin-animation function.
The default implementation will call it implicitly when the timeline is complete.

The simplest way to animate a layout is to create a <clutter-timeline> inside the
begin-animation virtual function, along with a <clutter-alpha>, and for each <"new-

frame"> signal emission call clutter-layout-manager-layout-changed, which will cause
a relayout. The <"completed"> signal emission should cause clutter-layout-manager-

end-animation to be called. The default implementation provided internally by <clutter-

layout-manager> does exactly this, so most sub-classes should either not override any
animation-related virtual function or simply override begin-animation and end-animation

to set up ad hoc state, and then chain up to the parent’s implementation.

The code below shows how a <clutter-layout-manager> sub-class should provide an-
imating the allocation of its children from within the allocate virtual function implemen-
tation. The animation is computed between the last stable allocation performed before the
animation started and the desired final allocation.

The <clutter-layout-manager> sub-class and it is updated by overriding the begin-

animation and end-animation virtual functions and chaining up to the base class imple-
mentation.

The last stable allocation is stored within a <clutter-layout-meta> sub-class used by
the implementation.

static void

my_layout_manager_allocate (ClutterLayoutManager *manager,

ClutterContainer *container,

Chapter 41: ClutterLayoutManager 157

const ClutterActorBox *allocation,

ClutterAllocationFlags flags)

{

MyLayoutManager *self = MY_LAYOUT_MANAGER (manager);

ClutterActor *child;

for (child = clutter_actor_get_first_child (CLUTTER_ACTOR (container));

child != NULL;

child = clutter_actor_get_next_sibling (child))

{

ClutterLayoutMeta *meta;

MyLayoutMeta *my_meta;

/* retrieve the layout meta-object */

meta = clutter_layout_manager_get_child_meta (manager,

container,

child);

my_meta = MY_LAYOUT_META (meta);

/* compute the desired allocation for the child */

compute_allocation (self, my_meta, child,

allocation, flags,

&child_box);

/* this is the additional code that deals with the animation

* of the layout manager

*/

if (!self->is_animating)

{

/* store the last stable allocation for later use */

my_meta->last_alloc = clutter_actor_box_copy (&child_box);

}

else

{

ClutterActorBox end = { 0, };

gdouble p;

/* get the progress of the animation */

p = clutter_layout_manager_get_animation_progress (manager);

if (my_meta->last_alloc != NULL)

{

/* copy the desired allocation as the final state */

end = child_box;

/* then interpolate the initial and final state

* depending on the progress of the animation,

Chapter 41: ClutterLayoutManager 158

* and put the result inside the box we will use

* to allocate the child

*/

clutter_actor_box_interpolate (my_meta->last_alloc,

&end,

p,

&child_box);

}

else

{

/* if there is no stable allocation then the child was

* added while animating; one possible course of action

* is to just bail out and fall through to the allocation

* to position the child directly at its final state

*/

my_meta->last_alloc =

clutter_actor_box_copy (&child_box);

}

}

/* allocate the child */

clutter_actor_allocate (child, &child_box, flags);

}

}

Sub-classes of <clutter-layout-manager> that support animations of the layout
changes should call clutter-layout-manager-begin-animation whenever a layout
property changes value, e.g.:

if (self->orientation != new_orientation)

{

ClutterLayoutManager *manager;

self->orientation = new_orientation;

manager = CLUTTER_LAYOUT_MANAGER (self);

clutter_layout_manager_layout_changed (manager);

clutter_layout_manager_begin_animation (manager, 500, CLUTTER_LINEAR);

g_object_notify (G_OBJECT (self), "orientation");

}

The code above will animate a change in the layout property of a layout manager.

Chapter 41: ClutterLayoutManager 159

41.5 Layout Properties

If a layout manager has layout properties, that is properties that should exist only as the
result of the presence of a specific (layout manager, container actor, child actor) combi-
nation, and it wishes to store those properties inside a <clutter-layout-meta>, then it
should override the ::get-child-meta-type virtual function to return the <g-type> of
the <clutter-layout-meta> sub-class used to store the layout properties; optionally, the
<clutter-layout-manager> sub-class might also override the (structname "ClutterLayout-
Manager") ::create-child-meta virtual function to control how the <clutter-layout-

meta> instance is created, otherwise the default implementation will be equivalent to:

ClutterLayoutManagerClass *klass;

GType meta_type;

klass = CLUTTER_LAYOUT_MANAGER_GET_CLASS (manager);

meta_type = klass->get_child_meta_type (manager);

return g_object_new (meta_type,

"manager", manager,

"container", container,

"actor", actor,

NULL);

Where (varname "container") is the <clutter-container> using the <clutter-

layout-manager> and <clutter-actor> child of the <clutter-container>.

41.6 Using ClutterLayoutManager with ClutterScript

<clutter-layout-manager> instance can be created in the same way as other objects in
<clutter-script>; properties can be set using the common syntax.

Layout properties can be set on children of a container with a <clutter-layout-

manager> using the layout:: modifier on the property name, for instance:

{

"type" : "ClutterBox",

"layout-manager" : { "type" : "ClutterTableLayout" },

"children" : [

{

"type" : "ClutterTexture",

"filename" : "image-00.png",

"layout::row" : 0,

"layout::column" : 0,

"layout::x-align" : "left",

"layout::y-align" : "center",

"layout::x-expand" : true,

"layout::y-expand" : true

Chapter 41: ClutterLayoutManager 160

},

{

"type" : "ClutterTexture",

"filename" : "image-01.png",

"layout::row" : 0,

"layout::column" : 1,

"layout::x-align" : "right",

"layout::y-align" : "center",

"layout::x-expand" : true,

"layout::y-expand" : true

}

]

}

<clutter-layout-manager> is available since Clutter 1.2

41.7 Usage

[Function]clutter-layout-manager-allocate
(self <clutter-layout-manager>) (container <clutter-container>)
(allocation <clutter-actor-box>) (flags <clutter-allocation-flags>)

[Method]allocate
Allocates the children of container given an area

See also clutter-actor-allocate

manager a <clutter-layout-manager>

container the <clutter-container> using manager

allocation the <clutter-actor-box> containing the allocated area of container

flags the allocation flags

Since 1.2

Chapter 42: ClutterLayoutMeta 161

42 ClutterLayoutMeta

Wrapper for actors inside a layout manager

42.1 Overview

<clutter-layout-meta> is a wrapper object created by <clutter-layout-manager> im-
plementations in order to store child-specific data and properties.

A <clutter-layout-meta> wraps a <clutter-actor> inside a <clutter-container>

using a <clutter-layout-manager>.

<clutter-layout-meta> is available since Clutter 1.2

42.2 Usage

[Function]clutter-layout-meta-get-manager (self <clutter-layout-meta>)
⇒ (ret <clutter-layout-manager>)

[Method]get-manager
Retrieves the actor wrapped by data

data a <clutter-layout-meta>

ret a <clutter-layout-manager>.

Since 1.2

Chapter 43: ClutterListModel 162

43 ClutterListModel

List model implementation

43.1 Overview

<clutter-list-model> is a <clutter-model> implementation provided by Clutter.
<clutter-list-model> uses a <g-sequence> for storing the values for each row, so it’s
optimized for insertion and look up in sorted lists.

<clutter-list-model> is available since Clutter 0.6

43.2 Usage

Chapter 44: General 163

44 General

Various ’global’ clutter functions.

44.1 Overview

Functions to retrieve various global Clutter resources and other utility functions for main-
loops, events and threads

44.2 Threading Model

Clutter is thread-aware: all operations performed by Clutter are assumed to be under the
big Clutter lock, which is created when the threading is initialized through clutter-init.

The code below shows how to correctly initialize Clutter in a multi-threaded environ-
ment. These operations are mandatory for applications that wish to use threads with
Clutter.

int

main (int argc, char *argv[])

{

/* initialize Clutter */

clutter_init (&argc, &argv);

/* program code */

/* acquire the main lock */

clutter_threads_enter ();

/* start the main loop */

clutter_main ();

/* release the main lock */

clutter_threads_leave ();

/* clean up */

return 0;

}

This threading model has the caveat that it is only safe to call Clutter’s API when the
lock has been acquired — which happens between pairs of clutter-threads-enter
and clutter-threads-leave calls.

The only safe and portable way to use the Clutter API in a multi-threaded environment
is to never access the API from a thread that did not call clutter-init and clutter-main.

The common pattern for using threads with Clutter is to use worker threads to perform
blocking operations and then install idle or timeout sources with the result when the thread
finished.

Chapter 44: General 164

Clutter provides thread-aware variants of g-idle-add and g-timeout-add that acquire
the Clutter lock before invoking the provided callback: clutter-threads-add-idle and
clutter-threads-add-timeout.

The example below shows how to use a worker thread to perform a blocking operation,
and perform UI updates using the main loop.

44.3 Usage

[Function]clutter-main
Starts the Clutter mainloop.

[Function]clutter-main-quit
Terminates the Clutter mainloop.

[Function]clutter-main-level ⇒ (ret int)
Retrieves the depth of the Clutter mainloop.

ret The level of the mainloop.

[Function]clutter-get-default-frame-rate ⇒ (ret unsigned-int)
Retrieves the default frame rate. See clutter-set-default-frame-rate.

ret the default frame rate

Since 0.6

[Function]clutter-get-font-map ⇒ (ret <pango-font-map>)
Retrieves the <pango-font-map> instance used by Clutter. You can use the global
font map object with the COGL Pango API.

ret the <pango-font-map> instance. The returned value is owned by Clutter
and it should never be unreferenced.

Since 1.0

[Function]clutter-get-default-text-direction
⇒ (ret <clutter-text-direction>)

Retrieves the default direction for the text. The text direction is determined by the
locale and/or by the "CLUTTER TEXT DIRECTION") environment variable.

The default text direction can be overridden on a per-actor basis by using clutter-

actor-set-text-direction.

ret the default text direction

Since 1.2

[Function]clutter-get-accessibility-enabled ⇒ (ret bool)
Returns whether Clutter has accessibility support enabled. As least, a value of TRUE
means that there are a proper AtkUtil implementation available

ret ‘#t’ if Clutter has accessibility support enabled

Since 1.4

Chapter 44: General 165

[Function]clutter-get-keyboard-grab ⇒ (ret <clutter-actor>)
Queries the current keyboard grab of clutter.

ret the actor currently holding the keyboard grab, or NULL if there is no
grab.

Since 0.6

[Function]clutter-get-pointer-grab ⇒ (ret <clutter-actor>)
Queries the current pointer grab of clutter.

ret the actor currently holding the pointer grab, or NULL if there is no grab.

Since 0.6

[Function]clutter-grab-keyboard (actor <clutter-actor>)
Grabs keyboard events, after the grab is done keyboard events (<"key-press-
event"> and <"key-release-event">) are delivered to this actor directly. The
source set in the event will be the actor that would have received the event if the
keyboard grab was not in effect.

Like pointer grabs, keyboard grabs should only be used as a last resource.

See also clutter-stage-set-key-focus and clutter-actor-grab-key-focus to
perform a "soft" key grab and assign key focus to a specific actor.

actor a <clutter-actor>

Since 0.6

[Function]clutter-grab-pointer (actor <clutter-actor>)
Grabs pointer events, after the grab is done all pointer related events (press, motion,
release, enter, leave and scroll) are delivered to this actor directly without passing
through both capture and bubble phases of the event delivery chain. The source set
in the event will be the actor that would have received the event if the pointer grab
was not in effect.

Grabs completely override the entire event delivery chain done by Clutter. Pointer
grabs should only be used as a last resource; using the <"captured-event"> signal
should always be the preferred way to intercept event delivery to reactive actors.

This function should rarely be used.

If a grab is required, you are strongly encouraged to use a specific input device by
calling clutter-input-device-grab.

actor a <clutter-actor>

Since 0.6

[Function]clutter-ungrab-keyboard
Removes an existing grab of the keyboard.

Since 0.6

[Function]clutter-ungrab-pointer
Removes an existing grab of the pointer.

Since 0.6

Chapter 44: General 166

[Function]clutter-do-event (event <clutter-event>)
Processes an event.

The event must be a valid <clutter-event> and have a <clutter-stage> associated
to it.

This function is only useful when embedding Clutter inside another toolkit, and it
should never be called by applications.

event a <clutter-event>.

Since 0.4

Chapter 45: ClutterMedia 167

45 ClutterMedia

An interface for controlling playback of media data

45.1 Overview

<clutter-media> is an interface for controlling playback of media sources.

Clutter core does not provide an implementation of this interface, but other integration
libraries like Clutter-GStreamer implement it to offer a uniform API for applications.

<clutter-media> is available since Clutter 0.2

45.2 Usage

[Function]clutter-media-set-uri (self <clutter-media>) (uri mchars)
[Method]set-uri

Sets the URI of media to uri.

media a <clutter-media>

uri the URI of the media stream

Since 0.2

[Function]clutter-media-get-uri (self <clutter-media>) ⇒ (ret mchars)
[Method]get-uri

Retrieves the URI from media.

media a <clutter-media>

ret the URI of the media stream. Use g-free to free the returned string

Since 0.2

[Function]clutter-media-set-playing (self <clutter-media>) (playing bool)
[Method]set-playing

Starts or stops playing of media. The implementation might be asynchronous, so the
way to know whether the actual playing state of the media is to use the <"notify">
signal on the <"playing"> property and then retrieve the current state with clutter-

media-get-playing. ClutterGstVideoTexture in clutter-gst is an example of such an
asynchronous implementation.

media a <clutter-media>

playing ‘#t’ to start playing

Since 0.2

[Function]clutter-media-get-playing (self <clutter-media>) ⇒ (ret bool)
[Method]get-playing

Retrieves the playing status of media.

media A <clutter-media> object

ret ‘#t’ if playing, ‘#f’ if stopped.

Since 0.2

Chapter 45: ClutterMedia 168

[Function]clutter-media-set-progress (self <clutter-media>)
(progress double)

[Method]set-progress
Sets the playback progress of media. The progress is a normalized value between 0.0
(begin) and 1.0 (end).

media a <clutter-media>

progress the progress of the playback, between 0.0 and 1.0

Since 1.0

[Function]clutter-media-get-progress (self <clutter-media>)
⇒ (ret double)

[Method]get-progress
Retrieves the playback progress of media.

media a <clutter-media>

ret the playback progress, between 0.0 and 1.0

Since 1.0

[Function]clutter-media-set-subtitle-uri (self <clutter-media>)
(uri mchars)

[Method]set-subtitle-uri
Sets the location of a subtitle file to display while playing media.

media a <clutter-media>

uri the URI of a subtitle file

Since 1.2

[Function]clutter-media-get-subtitle-uri (self <clutter-media>)
⇒ (ret mchars)

[Method]get-subtitle-uri
Retrieves the URI of the subtitle file in use.

media a <clutter-media>

ret the URI of the subtitle file. Use g-free to free the returned string

Since 1.2

[Function]clutter-media-set-audio-volume (self <clutter-media>)
(volume double)

[Method]set-audio-volume
Sets the playback volume of media to volume.

media a <clutter-media>

volume the volume as a double between 0.0 and 1.0

Since 1.0

Chapter 45: ClutterMedia 169

[Function]clutter-media-get-audio-volume (self <clutter-media>)
⇒ (ret double)

[Method]get-audio-volume
Retrieves the playback volume of media.

media a <clutter-media>

ret The playback volume between 0.0 and 1.0

Since 1.0

[Function]clutter-media-get-can-seek (self <clutter-media>) ⇒ (ret bool)
[Method]get-can-seek

Retrieves whether media is seekable or not.

media a <clutter-media>

ret ‘#t’ if media can seek, ‘#f’ otherwise.

Since 0.2

[Function]clutter-media-get-buffer-fill (self <clutter-media>)
⇒ (ret double)

[Method]get-buffer-fill
Retrieves the amount of the stream that is buffered.

media a <clutter-media>

ret the fill level, between 0.0 and 1.0

Since 1.0

[Function]clutter-media-get-duration (self <clutter-media>)
⇒ (ret double)

[Method]get-duration
Retrieves the duration of the media stream that media represents.

media a <clutter-media>

ret the duration of the media stream, in seconds

Since 0.2

[Function]clutter-media-set-filename (self <clutter-media>)
(filename mchars)

[Method]set-filename
Sets the source of media using a file path.

media a <clutter-media>

filename A filename

Since 0.2

Chapter 46: ClutterModelIter 170

46 ClutterModelIter

Iterates through a model

46.1 Overview

<clutter-model-iter> is an object used for iterating through all the rows of a <clutter-

model>. It allows setting and getting values on the row which is currently pointing at.

A <clutter-model-iter> represents a position between two elements of the sequence.
For example, the iterator returned by clutter-model-get-first-iter represents the gap
immediately before the first row of the <clutter-model>, and the iterator returned by
clutter-model-get-last-iter represents the gap immediately after the last row.

A <clutter-model-iter> can only be created by a <clutter-model> implementation
and it is valid as long as the model does not change.

<clutter-model-iter> is available since Clutter 0.6

46.2 Usage

Chapter 47: ClutterModel 171

47 ClutterModel

A generic model implementation

47.1 Overview

<clutter-model> is a generic list model API which can be used to implement the model-
view-controller architectural pattern in Clutter.

The <clutter-model> class is a list model which can accept most GObject types as a
column type.

Creating a simple clutter model:

enum

{

COLUMN_INT,

COLUMN_STRING,

N_COLUMNS

};

{

ClutterModel *model;

gint i;

model = clutter_model_default_new (N_COLUMNS,

/* column type, column title */

G_TYPE_INT, "my integers",

G_TYPE_STRING, "my strings");

for (i = 0; i < 10; i++)

{

gchar *string = g_strdup_printf ("String %d", i);

clutter_model_append (model,

COLUMN_INT, i,

COLUMN_STRING, string,

-1);

g_free (string);

}

}

Iterating through the model consists of retrieving a new <clutter-model-iter> pointing
to the starting row, and calling clutter-model-iter-next or clutter-model-iter-prev
to move forward or backwards, repectively.

A valid <clutter-model-iter> represents the position between two rows in the model.
For example, the "first" iterator represents the gap immediately before the first row, and

Chapter 47: ClutterModel 172

the "last" iterator represents the gap immediately after the last row. In an empty sequence,
the first and last iterators are the same.

Iterating a <clutter-model>:

enum

{

COLUMN_INT,

COLUMN_STRING.

N_COLUMNS

};

{

ClutterModel *model;

ClutterModelIter *iter = NULL;

/* Fill the model */

model = populate_model ();

/* Get the first iter */

iter = clutter_model_get_first_iter (model);

while (!clutter_model_iter_is_last (iter))

{

print_row (iter);

iter = clutter_model_iter_next (iter);

}

/* Make sure to unref the iter */

g_object_unref (iter);

}

<clutter-model> is an abstract class. Clutter provides a list model implementation
called <clutter-list-model> which has been optimised for insertion and look up in sorted
lists.

47.2 ClutterModel custom properties for <clutter-script>

<clutter-model> defines a custom property "columns" for <clutter-script> which allows
defining the column names and types. It also defines a custom "rows" property which allows
filling the <clutter-model> with some data.

The definition below will create a <clutter-list-model> with three columns: the first
one with name "Name" and containing strings; the second one with name "Score" and
containing integers; the third one with name "Icon" and containing <clutter-texture>s.
The model is filled with three rows. A row can be defined either with an array that holds
all columns of a row, or an object that holds "column-name" : "column-value" pairs.

Chapter 47: ClutterModel 173

{

"type" : "ClutterListModel",

"id" : "teams-model",

"columns" : [

["Name", "gchararray"],

["Score", "gint"],

["Icon", "ClutterTexture"]

],

"rows" : [

["Team 1", 42, { "type" : "ClutterTexture", "filename" : "team1.png" }],

["Team 2", 23, "team2-icon-script-id"],

{ "Name" : "Team 3", "Icon" : "team3-icon-script-id" }

]

}

<clutter-model> is available since Clutter 0.6

47.3 Usage

Chapter 48: ClutterOffscreenEffect 174

48 ClutterOffscreenEffect

Base class for effects using offscreen buffers

48.1 Overview

<clutter-offscreen-effect> is an abstract class that can be used by <clutter-effect>

sub-classes requiring access to an offscreen buffer.

Some effects, like the fragment shader based effects, can only use GL textures, and in
order to apply those effects to any kind of actor they require that all drawing operations
are applied to an offscreen framebuffer that gets redirected to a texture.

<clutter-offscreen-effect> provides all the heavy-lifting for creating the offscreen
framebuffer, the redirection and the final paint of the texture on the desired stage.

48.2 Implementing a ClutterOffscreenEffect

Creating a sub-class of <clutter-offscreen-effect> requires, in case of overriding the
<clutter-effect> virtual functions, to chain up to the <clutter-offscreen-effect>’s
implementation.

On top of the <clutter-effect>’s virtual functions, <clutter-offscreen-effect>

also provides a paint-target function, which encapsulates the effective painting of the
texture that contains the result of the offscreen redirection.

The size of the target material is defined to be as big as the transformed size of the
<clutter-actor> using the offscreen effect. Sub-classes of <clutter-offscreen-effect>
can change the texture creation code to provide bigger textures by overriding the create-
texture virtual function; no chain up to the <clutter-offscreen-effect> implementa-
tion is required in this case.

<clutter-offscreen-effect> is available since Clutter 1.4

48.3 Usage

Chapter 49: ClutterPageTurnEffect 175

49 ClutterPageTurnEffect

A page turning effect

49.1 Overview

A simple page turning effect

<clutter-page-turn-effect> is available since Clutter 1.4

49.2 Usage

[Function]clutter-page-turn-effect-new (period double) (angle double)
(radius float) ⇒ (ret <clutter-effect>)

Creates a new <clutter-page-turn-effect> instance with the given parameters

period the period of the page curl, between 0.0 and 1.0

angle the angle of the page curl, between 0.0 and 360.0

radius the radius of the page curl, in pixels

ret the newly created <clutter-page-turn-effect>

Since 1.4

[Function]clutter-page-turn-effect-set-period
(self <clutter-page-turn-effect>) (period double)

[Method]set-period
Sets the period of the page curling, between 0.0 (no curling) and 1.0 (fully curled)

effect a <clutter-page-turn-effect>

period the period of the page curl, between 0.0 and 1.0

Since 1.4

[Function]clutter-page-turn-effect-get-period
(self <clutter-page-turn-effect>) ⇒ (ret double)

[Method]get-period
Retrieves the value set using clutter-page-turn-effect-get-period

effect a <clutter-page-turn-effect>

ret the period of the page curling

Since 1.4

[Function]clutter-page-turn-effect-set-angle
(self <clutter-page-turn-effect>) (angle double)

[Method]set-angle
Sets the angle of the page curling, in degrees

effect <clutter-page-turn-effect>

angle the angle of the page curl, in degrees

Since 1.4

Chapter 49: ClutterPageTurnEffect 176

[Function]clutter-page-turn-effect-get-angle
(self <clutter-page-turn-effect>) ⇒ (ret double)

[Method]get-angle
Retrieves the value set using clutter-page-turn-effect-get-angle

effect a <clutter-page-turn-effect>:

ret the angle of the page curling

Since 1.4

[Function]clutter-page-turn-effect-set-radius
(self <clutter-page-turn-effect>) (radius float)

[Method]set-radius
Sets the radius of the page curling

effect a <clutter-page-turn-effect>:

radius the radius of the page curling, in pixels

Since 1.4

[Function]clutter-page-turn-effect-get-radius
(self <clutter-page-turn-effect>) ⇒ (ret float)

[Method]get-radius
Retrieves the value set using clutter-page-turn-effect-set-radius

effect a <clutter-page-turn-effect>

ret the radius of the page curling

Since 1.4

Chapter 50: ClutterPaintNode 177

50 ClutterPaintNode

Paint objects

50.1 Overview

<clutter-paint-node> is an element in the render graph.

The render graph contains all the elements that need to be painted by Clutter when
submitting a frame to the graphics system.

The render graph is distinct from the scene graph: the scene graph is composed by
actors, which can be visible or invisible; the scene graph elements also respond to events.
The render graph, instead, is only composed by nodes that will be painted.

Each <clutter-actor> can submit multiple <clutter-paint-node>s to the render
graph.

50.2 Usage

[Function]clutter-paint-node-set-name (self <clutter-paint-node>)
(name mchars)

[Method]set-name
Sets a user-readable name for node.

The name will be used for debugging purposes.

The node will copy the passed string.

node a <clutter-paint-node>

name a string annotating the node

Since 1.10

[Function]clutter-paint-node-add-child (self <clutter-paint-node>)
(child <clutter-paint-node>)

[Method]add-child
Adds child to the list of children of node.

This function will acquire a reference on child.

node a <clutter-paint-node>

child the child <clutter-paint-node> to add

Since 1.10

[Function]clutter-paint-node-add-rectangle (self <clutter-paint-node>)
(rect <clutter-actor-box>)

[Method]add-rectangle
Adds a rectangle region to the node, as described by the passed rect.

node a <clutter-paint-node>

rect a <clutter-actor-box>

Since 1.10

Chapter 51: Paint Nodes 178

51 Paint Nodes

ClutterPaintNode implementations

51.1 Overview

Clutter provides a set of predefined <clutter-paint-node> implementations that cover all
the state changes available.

51.2 Usage

[Function]clutter-color-node-new (self <clutter-color>)
⇒ (ret <clutter-paint-node>)

Creates a new <clutter-paint-node> that will paint a solid color fill using color.

color the color to paint, or ‘#f’.

ret the newly created <clutter-paint-node>. Use clutter-paint-node-

unref when done.

Since 1.10

[Function]clutter-text-node-new (layout <pango-layout>)
(color <clutter-color>) ⇒ (ret <clutter-paint-node>)

Creates a new <clutter-paint-node> that will paint a <pango-layout> with the
given color.

This function takes a reference on the passed layout, so it is safe to call g-object-
unref after it returns.

layout a <pango-layout>, or ‘#f’.

color the color used to paint the layout, or ‘#f’.

ret the newly created <clutter-paint-node>. Use clutter-paint-node-

unref when done.

Since 1.10

[Function]clutter-clip-node-new ⇒ (ret <clutter-paint-node>)
Creates a new <clutter-paint-node> that will clip its child nodes to the 2D regions
added to it.

ret the newly created <clutter-paint-node>. Use clutter-paint-node-

unref when done.

Since 1.10

Chapter 52: ClutterPathConstraint 179

52 ClutterPathConstraint

A constraint that follows a path

52.1 Overview

<clutter-path-constraint> is a simple constraint that modifies the allocation of the
<clutter-actor> to which it has been applied using a <clutter-path>.

By setting the <"offset"> property it is possible to control how far along the path the
<clutter-actor> should be.

ClutterPathConstraint is available since Clutter 1.6.

52.2 Usage

[Function]clutter-path-constraint-new (self <clutter-path>) (offset float)
⇒ (ret <clutter-constraint>)

[Method]constraint-new
Creates a new <clutter-path-constraint> with the given path and offset

path a <clutter-path>, or ‘#f’.

offset the offset along the <clutter-path>

ret the newly created <clutter-path-constraint>.

Since 1.6

[Function]clutter-path-constraint-set-path
(self <clutter-path-constraint>) (path <clutter-path>)

[Method]set-path
Sets the path to be followed by the <clutter-path-constraint>.

The constraint will take ownership of the <clutter-path> passed to this function.

constraint a <clutter-path-constraint>

path a <clutter-path>.

Since 1.6

[Function]clutter-path-constraint-get-path
(self <clutter-path-constraint>) ⇒ (ret <clutter-path>)

[Method]get-path
Retrieves a pointer to the <clutter-path> used by constraint.

constraint a <clutter-path-constraint>

ret the <clutter-path> used by the <clutter-path-constraint>, or ‘#f’.
The returned <clutter-path> is owned by the constraint and it should
not be unreferenced.

Since 1.6

Chapter 52: ClutterPathConstraint 180

[Function]clutter-path-constraint-set-offset
(self <clutter-path-constraint>) (offset float)

[Method]set-offset
Sets the offset along the <clutter-path> used by constraint.

constraint a <clutter-path-constraint>

offset the offset along the path

Since 1.6

[Function]clutter-path-constraint-get-offset
(self <clutter-path-constraint>) ⇒ (ret float)

[Method]get-offset
Retrieves the offset along the <clutter-path> used by constraint.

constraint a <clutter-path-constraint>

ret the offset

Since 1.6

Chapter 53: ClutterPath 181

53 ClutterPath

An object describing a path with straight lines and bezier curves.

53.1 Overview

A <clutter-path> contains a description of a path consisting of straight lines and bezier
curves. This can be used in a <clutter-behaviour-path> to animate an actor moving
along the path.

The path consists of a series of nodes. Each node is one of the following four types:

CLUTTER PATH LINE TO
CLUTTER PATH CURVE TO
CLUTTER PATH CLOSE

Changes the position of the path to the given pair of coordinates. This is usually used
as the first node of a path to mark the start position. If it is used in the middle of a path
then the path will be disjoint and the actor will appear to jump to the new position when
animated.

Creates a straight line from the previous point to the given point.

Creates a bezier curve. The end of the last node is used as the first control point and
the three subsequent coordinates given in the node as used as the other three.

Creates a straight line from the last node to the last ‘CLUTTER_PATH_MOVE_TO’ node.
This can be used to close a path so that it will appear as a loop when animated.

The first three types have the corresponding relative versions ‘CLUTTER_PATH_REL_MOVE_TO’,
‘CLUTTER_PATH_REL_LINE_TO’ and ‘CLUTTER_PATH_REL_CURVE_TO’. These are exactly the
same except the coordinates are given relative to the previous node instead of as direct
screen positions.

You can build a path using the node adding functions such as clutter-path-add-line-
to. Alternatively the path can be described in a string using a subset of the SVG path
syntax. See clutter-path-add-string for details.

<clutter-path> is available since Clutter 1.0

53.2 Usage

[Function]clutter-path-new ⇒ (ret <clutter-path>)
Creates a new <clutter-path> instance with no nodes.

The object has a floating reference so if you add it to a <clutter-behaviour-path>

then you do not need to unref it.

ret the newly created <clutter-path>

Since 1.0

[Function]clutter-path-new-with-description (desc mchars)
⇒ (ret <clutter-path>)

Creates a new <clutter-path> instance with the nodes described in desc. See
clutter-path-add-string for details of the format of the string.

Chapter 53: ClutterPath 182

The object has a floating reference so if you add it to a <clutter-behaviour-path>

then you do not need to unref it.

desc a string describing the path

ret the newly created <clutter-path>

Since 1.0

[Function]clutter-path-add-move-to (self <clutter-path>) (x int) (y int)
[Method]add-move-to

Adds a ‘CLUTTER_PATH_MOVE_TO’ type node to the path. This is usually used as the
first node in a path. It can also be used in the middle of the path to cause the actor
to jump to the new coordinate.

path a <clutter-path>

x the x coordinate

y the y coordinate

Since 1.0

[Function]clutter-path-add-rel-move-to (self <clutter-path>) (x int)
(y int)

[Method]add-rel-move-to
Same as clutter-path-add-move-to except the coordinates are relative to the pre-
vious node.

path a <clutter-path>

x the x coordinate

y the y coordinate

Since 1.0

[Function]clutter-path-add-line-to (self <clutter-path>) (x int) (y int)
[Method]add-line-to

Adds a ‘CLUTTER_PATH_LINE_TO’ type node to the path. This causes the actor to
move to the new coordinates in a straight line.

path a <clutter-path>

x the x coordinate

y the y coordinate

Since 1.0

[Function]clutter-path-add-rel-line-to (self <clutter-path>) (x int)
(y int)

[Method]add-rel-line-to
Same as clutter-path-add-line-to except the coordinates are relative to the pre-
vious node.

path a <clutter-path>

Chapter 53: ClutterPath 183

x the x coordinate

y the y coordinate

Since 1.0

[Function]clutter-path-add-curve-to (self <clutter-path>) (x 1 int)
(y 1 int) (x 2 int) (y 2 int) (x 3 int) (y 3 int)

[Method]add-curve-to
Adds a ‘CLUTTER_PATH_CURVE_TO’ type node to the path. This causes the actor to
follow a bezier from the last node to (x-3, y-3) using (x-1, y-1) and (x-2,y-2) as
control points.

path a <clutter-path>

x-1 the x coordinate of the first control point

y-1 the y coordinate of the first control point

x-2 the x coordinate of the second control point

y-2 the y coordinate of the second control point

x-3 the x coordinate of the third control point

y-3 the y coordinate of the third control point

Since 1.0

[Function]clutter-path-add-rel-curve-to (self <clutter-path>) (x 1 int)
(y 1 int) (x 2 int) (y 2 int) (x 3 int) (y 3 int)

[Method]add-rel-curve-to
Same as clutter-path-add-curve-to except the coordinates are relative to the pre-
vious node.

path a <clutter-path>

x-1 the x coordinate of the first control point

y-1 the y coordinate of the first control point

x-2 the x coordinate of the second control point

y-2 the y coordinate of the second control point

x-3 the x coordinate of the third control point

y-3 the y coordinate of the third control point

Since 1.0

[Function]clutter-path-add-close (self <clutter-path>)
[Method]add-close

Adds a ‘CLUTTER_PATH_CLOSE’ type node to the path. This creates a straight line
from the last node to the last ‘CLUTTER_PATH_MOVE_TO’ type node.

path a <clutter-path>

Since 1.0

Chapter 53: ClutterPath 184

[Function]clutter-path-add-string (self <clutter-path>) (str mchars)
⇒ (ret bool)

[Method]add-string
Adds new nodes to the end of the path as described in str. The format is a subset of
the SVG path format. Each node is represented by a letter and is followed by zero,
one or three pairs of coordinates. The coordinates can be separated by spaces or a
comma. The types are:

L

C

z

Adds a ‘CLUTTER_PATH_MOVE_TO’ node. Takes one pair of coordinates.

Adds a ‘CLUTTER_PATH_LINE_TO’ node. Takes one pair of coordinates.

Adds a ‘CLUTTER_PATH_CURVE_TO’ node. Takes three pairs of coordinates.

Adds a ‘CLUTTER_PATH_CLOSE’ node. No coordinates are needed.

The M, L and C commands can also be specified in lower case which means the
coordinates are relative to the previous node.

For example, to move an actor in a 100 by 100 pixel square centered on the point
300,300 you could use the following path:

M 250,350 l 0 -100 L 350,250 l 0 100 z

If the path description isn’t valid ‘#f’ will be returned and no nodes will be added.

path a <clutter-path>

str a string describing the new nodes

ret ‘#t’ is the path description was valid or ‘#f’ otherwise.

Since 1.0

[Function]clutter-path-add-node (self <clutter-path>)
(node <clutter-path-node>)

[Method]add-node
Adds node to the end of the path.

path a <clutter-path>

node a <clutter-path-node>

Since 1.0

[Function]clutter-path-add-cairo-path (self <clutter-path>)
(cpath cairo-path-t)

[Method]add-cairo-path
Add the nodes of the Cairo path to the end of path.

path a <clutter-path>

cpath a Cairo path

Since 1.0

Chapter 53: ClutterPath 185

[Function]clutter-path-get-n-nodes (self <clutter-path>)
⇒ (ret unsigned-int)

[Method]get-n-nodes
Retrieves the number of nodes in the path.

path a <clutter-path>

ret the number of nodes.

Since 1.0

[Function]clutter-path-get-node (self <clutter-path>)
(index unsigned-int) (node <clutter-path-node>)

[Method]get-node
Retrieves the node of the path indexed by index.

path a <clutter-path>

index the node number to retrieve

node a location to store a copy of the node.

Since 1.0

[Function]clutter-path-get-nodes (self <clutter-path>) ⇒ (ret gslist-of)
[Method]get-nodes

Returns a <gs-list> of <clutter-path-node>s. The list should be freed with g-

slist-free. The nodes are owned by the path and should not be freed. Altering the
path may cause the nodes in the list to become invalid so you should copy them if
you want to keep the list.

path a <clutter-path>

ret a list of nodes in the path.

Since 1.0

[Function]clutter-path-insert-node (self <clutter-path>) (index int)
(node <clutter-path-node>)

[Method]insert-node
Inserts node into the path before the node at the given offset. If index is negative it
will append the node to the end of the path.

path a <clutter-path>

index offset of where to insert the node

node the node to insert

Since 1.0

[Function]clutter-path-remove-node (self <clutter-path>)
(index unsigned-int)

[Method]remove-node
Removes the node at the given offset from the path.

path a <clutter-path>

Chapter 53: ClutterPath 186

index index of the node to remove

Since 1.0

[Function]clutter-path-replace-node (self <clutter-path>)
(index unsigned-int) (node <clutter-path-node>)

[Method]replace-node
Replaces the node at offset index with node.

path a <clutter-path>

index index to the existing node

node the replacement node

Since 1.0

[Function]clutter-path-get-description (self <clutter-path>)
⇒ (ret mchars)

[Method]get-description
Returns a newly allocated string describing the path in the same format as used by
clutter-path-add-string.

path a <clutter-path>

ret a string description of the path. Free with g-free.

Since 1.0

[Function]clutter-path-set-description (self <clutter-path>) (str mchars)
⇒ (ret bool)

[Method]set-description
Replaces all of the nodes in the path with nodes described by str. See clutter-path-
add-string for details of the format.

If the string is invalid then ‘#f’ is returned and the path is unaltered.

path a <clutter-path>

str a string describing the path

ret ‘#t’ is the path was valid, ‘#f’ otherwise.

Since 1.0

[Function]clutter-path-to-cairo-path (self <clutter-path>) (cr cairo-t)
[Method]to-cairo-path

Add the nodes of the ClutterPath to the path in the Cairo context.

path a <clutter-path>

cr a Cairo context

Since 1.0

Chapter 53: ClutterPath 187

[Function]clutter-path-clear (self <clutter-path>)
[Method]clear

Removes all nodes from the path.

path a <clutter-path>

Since 1.0

[Function]clutter-path-get-position (self <clutter-path>)
(progress double) (position <clutter-knot>) ⇒ (ret unsigned-int)

[Method]get-position
The value in progress represents a position along the path where 0.0 is the beginning
and 1.0 is the end of the path. An interpolated position is then stored in position.

path a <clutter-path>

progress a position along the path as a fraction of its length

position location to store the position.

ret index of the node used to calculate the position.

Since 1.0

[Function]clutter-path-get-length (self <clutter-path>)
⇒ (ret unsigned-int)

[Method]get-length
Retrieves an approximation of the total length of the path.

path a <clutter-path>

ret the length of the path.

Since 1.0

[Function]clutter-path-node-equal (self <clutter-path-node>)
(node b <clutter-path-node>) ⇒ (ret bool)

Compares two nodes and checks if they are the same type with the same coordinates.

node-a First node

node-b Second node

ret ‘#t’ if the nodes are the same.

Since 1.0

Chapter 54: ClutterPropertyTransition 188

54 ClutterPropertyTransition

Property transitions

54.1 Overview

<clutter-property-transition> is a specialized <clutter-transition> that can be
used to tween a property of a <clutter-animatable> instance.

<clutter-property-transition> is available since Clutter 1.10

54.2 Usage

[Function]clutter-property-transition-new (property name mchars)
⇒ (ret <clutter-transition>)

Creates a new <clutter-property-transition>.

property-name
a property of animatable, or ‘#f’.

ret the newly created <clutter-property-transition>. Use g-object-

unref when done.

Since 1.10

Chapter 55: ClutterScript 189

55 ClutterScript

Loads a scene from UI definition data

55.1 Overview

<clutter-script> is an object used for loading and building parts or a complete scenegraph
from external definition data in forms of string buffers or files.

The UI definition format is JSON, the JavaScript Object Notation as described by RFC
4627. <clutter-script> can load a JSON data stream, parse it and build all the objects
defined into it. Each object must have an "id" and a "type" properties defining the name to
be used to retrieve it from <clutter-script> with clutter-script-get-object, and the
class type to be instanciated. Every other attribute will be mapped to the class properties.

A <clutter-script> holds a reference on every object it creates from the definition data,
except for the stage. Every non-actor object will be finalized when the <clutter-script>
instance holding it will be finalized, so they need to be referenced using g-object-ref in
order for them to survive.

A simple object might be defined as:

{

"id" : "red-button",

"type" : "ClutterRectangle",

"width" : 100,

"height" : 100,

"color" : "#ff0000ff"

}

This will produce a red <clutter-rectangle>, 100x100 pixels wide, and with a Clut-
terScript id of "red-button"; it can be retrieved by calling:

ClutterActor *red_button;

red_button = CLUTTER_ACTOR (clutter_script_get_object (script, "red-button"));

and then manipulated with the Clutter API. For every object created using ClutterScript
it is possible to check the id by calling clutter-get-script-id.

Packing can be represented using the "children" member, and passing an array of objects
or ids of objects already defined (but not packed: the packing rules of Clutter still apply,
and an actor cannot be packed in multiple containers without unparenting it in between).

Behaviours and timelines can also be defined inside a UI definition buffer:

{

"id" : "rotate-behaviour",

"type" : "ClutterBehaviourRotate",

"angle-start" : 0.0,

"angle-end" : 360.0,

"axis" : "z-axis",

Chapter 55: ClutterScript 190

"alpha" : {

"timeline" : { "duration" : 4000, "loop" : true },

"mode" : "easeInSine"

}

}

And then to apply a defined behaviour to an actor defined inside the definition of an
actor, the "behaviour" member can be used:

{

"id" : "my-rotating-actor",

"type" : "ClutterTexture",

...

"behaviours" : ["rotate-behaviour"]

}

A <clutter-alpha> belonging to a <clutter-behaviour> can only be defined implicitly
like in the example above, or explicitly by setting the "alpha" property to point to a
previously defined <clutter-alpha>, e.g.:

{

"id" : "rotate-behaviour",

"type" : "ClutterBehaviourRotate",

"angle-start" : 0.0,

"angle-end" : 360.0,

"axis" : "z-axis",

"alpha" : {

"id" : "rotate-alpha",

"type" : "ClutterAlpha",

"timeline" : {

"id" : "rotate-timeline",

"type : "ClutterTimeline",

"duration" : 4000,

"loop" : true

},

"function" : "custom_sine_alpha"

}

}

Implicitely defined <clutter-alpha>s and <clutter-timeline>s can omit the well as
the clutter-script-get-object (they can, however, be extracted using the <clutter-

behaviour> and <clutter-alpha> API respectively).

Signal handlers can be defined inside a Clutter UI definition file and then autoconnected
to their respective signals using the clutter-script-connect-signals function:

...

"signals" : [

{ "name" : "button-press-event", "handler" : "on_button_press" },

Chapter 55: ClutterScript 191

{

"name" : "foo-signal",

"handler" : "after_foo",

"after" : true

},

],

...

Signal handler definitions must have a "name" and a "handler" members; they can
also have the "after" and "swapped" boolean members (for the signal connection flags
‘G_CONNECT_AFTER’ and ‘G_CONNECT_SWAPPED’ respectively) and the "object" string member
for calling g-signal-connect-object instead of g-signal-connect.

Signals can also be directly attached to a specific state defined inside a <clutter-state>
instance, for instance:

...

"signals" : [

{

"name" : "enter-event",

"states" : "button-states",

"target-state" : "hover"

},

{

"name" : "leave-event",

"states" : "button-states",

"target-state" : "base"

},

{

"name" : "button-press-event",

"states" : "button-states",

"target-state" : "active",

},

{

"name" : "key-press-event",

"states" : "button-states",

"target-state" : "key-focus",

"warp" : true

}

],

...

The "states" key defines the <clutter-state> instance to be used to resolve the "target-
state" key; it can be either a script id for a <clutter-state> built by the same <clutter-
script> instance, or to a <clutter-state> built in code and associated to the <clutter-
script> instance through the clutter-script-add-states function. If no "states" key is
present, then the default <clutter-state> associated to the <clutter-script> instance
will be used; the default <clutter-state> can be set using clutter-script-add-states

Chapter 55: ClutterScript 192

using a ‘#f’ name. The "warp" key can be used to warp to a specific state instead of
animating to it. State changes on signal emission will not affect the signal emission chain.

Clutter reserves the following names, so classes defining properties through the usual
GObject registration process should avoid using these names to avoid collisions:

"id" := the unique name of a ClutterScript object

"type" := the class literal name, also used to infer the type

function

"type_func" := the GType function name, for non-standard classes

"children" := an array of names or objects to add as children

"behaviours" := an array of names or objects to apply to an actor

"signals" := an array of signal definitions to connect to an object

"is-default" := a boolean flag used when defining the #ClutterStage;

if set to "true" the default stage will be used instead

of creating a new #ClutterStage instance

<clutter-script> is available since Clutter 0.6

55.2 Usage

[Function]clutter-script-new ⇒ (ret <clutter-script>)
Creates a new <clutter-script> instance. <clutter-script> can be used to load
objects definitions for scenegraph elements, like actors, or behavioural elements, like
behaviours and timelines. The definitions must be encoded using the JavaScript
Object Notation (JSON) language.

ret the newly created <clutter-script> instance. Use g-object-unref

when done.

Since 0.6

[Function]clutter-script-load-from-data (self <clutter-script>)
(data mchars) (length ssize_t) ⇒ (ret unsigned-int)

[Method]load-from-data
Loads the definitions from data into script and merges with the currently loaded ones,
if any.

script a <clutter-script>

data a buffer containing the definitions

length the length of the buffer, or -1 if data is a NUL-terminated buffer

error return location for a <g-error>, or ‘#f’

ret on error, zero is returned and error is set accordingly. On success, the
merge id for the UI definitions is returned. You can use the merge id with
clutter-script-unmerge-objects.

Since 0.6

Chapter 55: ClutterScript 193

[Function]clutter-script-load-from-file (self <clutter-script>)
(filename mchars) ⇒ (ret unsigned-int)

[Method]load-from-file
Loads the definitions from filename into script and merges with the currently loaded
ones, if any.

script a <clutter-script>

filename the full path to the definition file

error return location for a <g-error>, or ‘#f’

ret on error, zero is returned and error is set accordingly. On success, the
merge id for the UI definitions is returned. You can use the merge id with
clutter-script-unmerge-objects.

Since 0.6

[Function]clutter-script-load-from-resource (self <clutter-script>)
(resource path mchars) ⇒ (ret unsigned-int)

[Method]load-from-resource
Loads the definitions from a resource file into script and merges with the currently
loaded ones, if any.

script a <clutter-script>

resource-path
the resource path of the file to parse

error return location for a <g-error>, or ‘#f’

ret on error, zero is returned and error is set accordingly. On success, the
merge id for the UI definitions is returned. You can use the merge id with
clutter-script-unmerge-objects.

Since 1.10

[Function]clutter-script-lookup-filename (self <clutter-script>)
(filename mchars) ⇒ (ret mchars)

[Method]lookup-filename
Looks up filename inside the search paths of script. If filename is found, its full path
will be returned .

script a <clutter-script>

filename the name of the file to lookup

ret the full path of filename or ‘#f’ if no path was found.

Since 0.8

[Function]clutter-script-get-object (self <clutter-script>)
(name mchars) ⇒ (ret <gobject>)

[Method]get-object
Retrieves the object bound to name. This function does not increment the reference
count of the returned object.

Chapter 55: ClutterScript 194

script a <clutter-script>

name the name of the object to retrieve

ret the named object, or ‘#f’ if no object with the given name was available.

Since 0.6

[Function]clutter-script-unmerge-objects (self <clutter-script>)
(merge id unsigned-int)

[Method]unmerge-objects
Unmerges the objects identified by merge-id.

script a <clutter-script>

merge-id merge id returned when loading a UI definition

Since 0.6

[Function]clutter-script-ensure-objects (self <clutter-script>)
[Method]ensure-objects

Ensure that every object defined inside script is correctly constructed. You should
rarely need to use this function.

script a <clutter-script>

Since 0.6

[Function]clutter-script-list-objects (self <clutter-script>)
⇒ (ret glist-of)

[Method]list-objects
Retrieves all the objects created by script.

Note: this function does not increment the reference count of the objects it returns.

script a <clutter-script>

ret a list of <gobject>s, or ‘#f’. The objects are owned by the <clutter-

script> instance. Use g-list-free on the returned list when done.

Since 0.8.2

[Function]clutter-script-add-states (self <clutter-script>)
(name mchars) (state <clutter-state>)

[Method]add-states
Associates a <clutter-state> to the <clutter-script> instance using the given
name.

The <clutter-script> instance will use state to resolve target states when connect-
ing signal handlers.

The <clutter-script> instance will take a reference on the <clutter-state> passed
to this function.

script a <clutter-script>

name a name for the state, or ‘#f’ to set the default <clutter-state>.

state a <clutter-state>

Since 1.8

Chapter 55: ClutterScript 195

[Function]clutter-script-get-states (self <clutter-script>)
(name mchars) ⇒ (ret <clutter-state>)

[Method]get-states
Retrieves the <clutter-state> for the given state-name.

If name is ‘#f’, this function will return the default <clutter-state> instance.

script a <clutter-script>

name the name of the <clutter-state>, or ‘#f’.

ret a pointer to the <clutter-state> for the given name. The <clutter-

state> is owned by the <clutter-script> instance and it should not be
unreferenced.

Since 1.8

[Function]clutter-script-get-type-from-name (self <clutter-script>)
(type name mchars) ⇒ (ret <gtype>)

[Method]get-type-from-name
Looks up a type by name, using the virtual function that <clutter-script> has for
that purpose. This function should rarely be used.

script a <clutter-script>

type-name
name of the type to look up

ret the type for the requested type name, or ‘G_TYPE_INVALID’ if not corre-
sponding type was found.

Since 0.6

[Function]clutter-get-script-id (gobject <gobject>) ⇒ (ret mchars)
Retrieves the Clutter script id, if any.

gobject a <gobject>

ret the script id, or ‘#f’ if object was not defined inside a UI definition file.
The returned string is owned by the object and should never be modified
or freed.

Since 0.6

Chapter 56: ClutterScriptable 196

56 ClutterScriptable

Override the UI definition parsing

56.1 Overview

The <clutter-scriptable-iface> interface exposes the UI definition parsing process to
external classes. By implementing this interface, a class can override the UI definition pars-
ing and transform complex data types into GObject properties, or allow custom properties.

<clutter-scriptable> is available since Clutter 0.6

56.2 Usage

Chapter 57: ClutterSettings 197

57 ClutterSettings

Settings configuration

57.1 Overview

Clutter depends on some settings to perform operations like detecting multiple button press
events, or font options to render text.

Usually, Clutter will strive to use the platform’s settings in order to be as much inte-
grated as possible. It is, however, possible to change these settings on a per-application
basis, by using the <clutter-settings> singleton object and setting its properties. It is
also possible, for toolkit developers, to retrieve the settings from the <clutter-settings>
properties when implementing new UI elements, for instance the default font name.

<clutter-settings> is available since Clutter 1.4

57.2 Usage

[Function]clutter-settings-get-default ⇒ (ret <clutter-settings>)
Retrieves the singleton instance of <clutter-settings>

ret the instance of <clutter-settings>. The returned object is owned by
Clutter and it should not be unreferenced directly.

Since 1.4

Chapter 58: ClutterShaderEffect 198

58 ClutterShaderEffect

Base class for shader effects

58.1 Overview

<clutter-shader-effect> is a class that implements all the plumbing for creating
<clutter-effect>s using GLSL shaders.

<clutter-shader-effect> creates an offscreen buffer and then applies the GLSL shader
(after checking whether the compilation and linking were successfull) to the buffer before
painting it on screen.

58.2 Implementing a ClutterShaderEffect

Creating a sub-class of <clutter-shader-effect> requires the overriding of the paint-

target virtual function from the <clutter-offscreen-effect> class as well as the get-

static-shader-source virtual from the <clutter-shader-effect> class.

The get-static-shader-source function should return a copy of the shader source to
use. This function is only called once per subclass of <clutter-shader-effect> regardless
of how many instances of the effect are created. The source for the shader is typically stored
in a static const string which is returned from this function via g-strdup.

The paint-target should set the shader’s uniforms if any. This is done by calling
clutter-shader-effect-set-uniform-value or clutter-shader-effect-set-uniform.
The sub-class should then chain up to the <clutter-shader-effect> implementation.

The example below shows a typical implementation of the get-static-shader-source
and paint-target phases of a <clutter-shader-effect> sub-class.

static gchar *

my_effect_get_static_shader_source (ClutterShaderEffect *effect)

{

return g_strdup (shader_source);

}

static gboolean

my_effect_paint_target (ClutterOffscreenEffect *effect)

{

MyEffect *self = MY_EFFECT (effect);

ClutterShaderEffect *shader = CLUTTER_SHADER_EFFECT (effect);

ClutterEffectClass *parent_class;

gfloat component_r, component_g, component_b;

/* the "tex" uniform is declared in the shader as:

*

* uniform int tex;

*

* and it is passed a constant value of 0

Chapter 58: ClutterShaderEffect 199

*/

clutter_shader_effect_set_uniform (shader, "tex", G_TYPE_INT, 1, 0);

/* the "component" uniform is declared in the shader as:

*

* uniform vec3 component;

*

* and it’s defined to contain the normalized components

* of a ClutterColor

*/

component_r = self->color.red / 255.0f;

component_g = self->color.green / 255.0f;

component_b = self->color.blue / 255.0f;

clutter_shader_effect_set_uniform (shader, "component",

G_TYPE_FLOAT, 3,

component_r,

component_g,

component_b);

/* chain up to the parent’s implementation */

parent_class = CLUTTER_OFFSCREEN_EFFECT_CLASS (my_effect_parent_class);

return parent_class->paint_target (effect);

}

<clutter-shader-effect> is available since Clutter 1.4

58.3 Usage

[Function]clutter-shader-effect-new (shader type <clutter-shader-type>)
⇒ (ret <clutter-effect>)

Creates a new <clutter-shader-effect>, to be applied to an actor using clutter-

actor-add-effect.

The effect will be empty until clutter-shader-effect-set-shader-source is
called.

shader-type
the type of the shader, either ‘CLUTTER_FRAGMENT_SHADER’, or
‘CLUTTER_VERTEX_SHADER’

ret the newly created <clutter-shader-effect>. Use g-object-unref

when done.

Since 1.8

Chapter 59: Shaders 200

59 Shaders

Programmable pipeline abstraction

59.1 Overview

<clutter-shader> is an object providing an abstraction over the OpenGL programmable
pipeline. By using <clutter-shader>s is possible to override the drawing pipeline by using
small programs also known as "shaders".

<clutter-shader> is available since Clutter 0.6.

<clutter-shader> is deprecated since Clutter 1.8; use <clutter-shader-effect> in
newly written code.

59.2 Usage

Chapter 60: ClutterSnapConstraint 201

60 ClutterSnapConstraint

A constraint snapping two actors together

60.1 Overview

<clutter-snap-constraint> is a constraint the snaps the edges of two actors together,
expanding the actor’s allocation if necessary.

An offset can be applied to the constraint, to provide spacing.

<clutter-snap-constraint> is available since Clutter 1.6

60.2 Usage

[Function]clutter-snap-constraint-new (source <clutter-actor>)
(from edge <clutter-snap-edge>) (to edge <clutter-snap-edge>)
(offset float) ⇒ (ret <clutter-constraint>)

Creates a new <clutter-snap-constraint> that will snap a <clutter-actor> to
the edge of source, with the given offset.

source the <clutter-actor> to use as the source of the constraint, or ‘#f’.

from-edge the edge of the actor to use in the constraint

to-edge the edge of source to use in the constraint

offset the offset to apply to the constraint, in pixels

ret the newly created <clutter-snap-constraint>

Since 1.6

[Function]clutter-snap-constraint-set-source
(self <clutter-snap-constraint>) (source <clutter-actor>)

[Method]set-source
Sets the source <clutter-actor> for the constraint

constraint a <clutter-snap-constraint>

source a <clutter-actor>, or ‘#f’ to unset the source.

Since 1.6

[Function]clutter-snap-constraint-get-source
(self <clutter-snap-constraint>) ⇒ (ret <clutter-actor>)

[Method]get-source
Retrieves the <clutter-actor> set using clutter-snap-constraint-set-source

constraint a <clutter-snap-constraint>

ret a pointer to the source actor.

Since 1.6

Chapter 60: ClutterSnapConstraint 202

[Function]clutter-snap-constraint-set-edges
(self <clutter-snap-constraint>) (from edge <clutter-snap-edge>)
(to edge <clutter-snap-edge>)

[Method]set-edges
Sets the edges to be used by the constraint

The from-edge is the edge on the <clutter-actor> to which constraint has been
added. The to-edge is the edge of the <clutter-actor> inside the <"source">

property.

constraint a <clutter-snap-constraint>

from-edge the edge on the actor

to-edge the edge on the source

Since 1.6

[Function]clutter-snap-constraint-get-edges
(self <clutter-snap-constraint>)
⇒ (from edge <clutter-snap-edge>) (to edge <clutter-snap-edge>)

[Method]get-edges
Retrieves the edges used by the constraint

constraint a <clutter-snap-constraint>

from-edge return location for the actor’s edge, or ‘#f’.

to-edge return location for the source’s edge, or ‘#f’.

Since 1.6

[Function]clutter-snap-constraint-set-offset
(self <clutter-snap-constraint>) (offset float)

[Method]set-offset
Sets the offset to be applied to the constraint

constraint a <clutter-snap-constraint>

offset the offset to apply, in pixels

Since 1.6

[Function]clutter-snap-constraint-get-offset
(self <clutter-snap-constraint>) ⇒ (ret float)

[Method]get-offset
Retrieves the offset set using clutter-snap-constraint-set-offset

constraint a <clutter-snap-constraint>

ret the offset, in pixels

Since 1.6

Chapter 61: Stage Manager 203

61 Stage Manager

Maintains the list of stages

61.1 Overview

<clutter-stage-manager> is a singleton object, owned by Clutter, which maintains the
list of currently active stages

Every newly-created <clutter-stage> will cause the emission of the <"stage-added">
signal; once a <clutter-stage> has been destroyed, the <"stage-removed"> signal will be
emitted

<clutter-stage-manager> is available since Clutter 0.8

61.2 Usage

[Function]clutter-stage-manager-get-default
⇒ (ret <clutter-stage-manager>)

Returns the default <clutter-stage-manager>.

ret the default stage manager instance. The returned object is owned by
Clutter and you should not reference or unreference it.

Since 0.8

[Function]clutter-stage-manager-list-stages
(self <clutter-stage-manager>) ⇒ (ret gslist-of)

[Method]list-stages
Lists all currently used stages.

stage-manager
a <clutter-stage-manager>

ret a newly allocated list of <clutter-stage> objects. Use g-slist-free

to deallocate it when done.

Since 0.8

[Function]clutter-stage-manager-peek-stages
(self <clutter-stage-manager>) ⇒ (ret gslist-of)

[Method]peek-stages
Lists all currently used stages.

stage-manager
a <clutter-stage-manager>

ret a pointer to the internal list of <clutter-stage> objects. The returned
list is owned by the <clutter-stage-manager> and should never be mod-
ified or freed.

Since 1.0

Chapter 62: ClutterStage 204

62 ClutterStage

Top level visual element to which actors are placed.

62.1 Overview

<clutter-stage> is a top level ’window’ on which child actors are placed and manipulated.

Backends might provide support for multiple stages. The support for this feature
can be checked at run-time using the clutter-feature-available function and the
‘CLUTTER_FEATURE_STAGE_MULTIPLE’ flag. If the backend used supports multiple stages,
new <clutter-stage> instances can be created using clutter-stage-new. These stages
must be managed by the developer using clutter-actor-destroy, which will take care of
destroying all the actors contained inside them.

<clutter-stage> is a proxy actor, wrapping the backend-specific implementation of the
windowing system. It is possible to subclass <clutter-stage>, as long as every overridden
virtual function chains up to the parent class corresponding function.

62.2 Usage

[Function]clutter-stage-new ⇒ (ret <clutter-actor>)
Creates a new, non-default stage. A non-default stage is a new top-level actor which
can be used as another container. It works exactly like the default stage, but while
clutter-stage-get-default will always return the same instance, you will have to
keep a pointer to any <clutter-stage> returned by clutter-stage-new.

The ability to support multiple stages depends on the current backend. Use clutter-
feature-available and ‘CLUTTER_FEATURE_STAGE_MULTIPLE’ to check at runtime
whether a backend supports multiple stages.

ret a new stage, or ‘#f’ if the default backend does not support multiple
stages. Use clutter-actor-destroy to programmatically close the re-
turned stage.

Since 0.8

[Function]clutter-stage-set-fullscreen (self <clutter-stage>)
(fullscreen bool)

[Method]set-fullscreen
Asks to place the stage window in the fullscreen or unfullscreen states.

(Note that you shouldn’t assume the window is definitely full screen afterward,
because other entities (e.g. the user or window manager) could unfullscreen it again,
and not all window managers honor requests to fullscreen windows.

If you want to receive notification of the fullscreen state you should either use the
<"fullscreen"> and <"unfullscreen"> signals, or use the notify signal for the
<"fullscreen-set"> property

stage a <clutter-stage>

fullscreen ‘#t’ to to set the stage fullscreen

Since 1.0

Chapter 62: ClutterStage 205

[Function]clutter-stage-get-fullscreen (self <clutter-stage>)
⇒ (ret bool)

[Method]get-fullscreen
Retrieves whether the stage is full screen or not

stage a <clutter-stage>

ret ‘#t’ if the stage is full screen

Since 1.0

[Function]clutter-stage-show-cursor (self <clutter-stage>)
[Method]show-cursor

Shows the cursor on the stage window

stage a <clutter-stage>

[Function]clutter-stage-hide-cursor (self <clutter-stage>)
[Method]hide-cursor

Makes the cursor invisible on the stage window

stage a <clutter-stage>

Since 0.4

[Function]clutter-stage-get-actor-at-pos (self <clutter-stage>)
(pick mode <clutter-pick-mode>) (x int) (y int)
⇒ (ret <clutter-actor>)

[Method]get-actor-at-pos
Checks the scene at the coordinates x and y and returns a pointer to the <clutter-
actor> at those coordinates.

By using pick-mode it is possible to control which actors will be painted and thus
available.

stage a <clutter-stage>

pick-mode how the scene graph should be painted

x X coordinate to check

y Y coordinate to check

ret the actor at the specified coordinates, if any.

[Function]clutter-stage-ensure-current (self <clutter-stage>)
[Method]ensure-current

This function essentially makes sure the right GL context is current for the passed
stage. It is not intended to be used by applications.

stage the <clutter-stage>

Since 0.8

Chapter 62: ClutterStage 206

[Function]clutter-stage-ensure-viewport (self <clutter-stage>)
[Method]ensure-viewport

Ensures that the GL viewport is updated with the current stage window size.

This function will queue a redraw of stage.

This function should not be called by applications; it is used when embedding a
<clutter-stage> into a toolkit with another windowing system, like GTK+.

stage a <clutter-stage>

Since 1.0

[Function]clutter-stage-ensure-redraw (self <clutter-stage>)
[Method]ensure-redraw

Ensures that stage is redrawn

This function should not be called by applications: it is used when embedding a
<clutter-stage> into a toolkit with another windowing system, like GTK+.

stage a <clutter-stage>

Since 1.0

[Function]clutter-stage-event (self <clutter-stage>)
(event <clutter-event>) ⇒ (ret bool)

[Method]event
This function is used to emit an event on the main stage.

You should rarely need to use this function, except for synthetised events.

stage a <clutter-stage>

event a <clutter-event>

ret the return value from the signal emission

Since 0.4

[Function]clutter-stage-set-key-focus (self <clutter-stage>)
(actor <clutter-actor>)

[Method]set-key-focus
Sets the key focus on actor. An actor with key focus will receive all the key events.
If actor is ‘#f’, the stage will receive focus.

stage the <clutter-stage>

actor the actor to set key focus to, or ‘#f’.

Since 0.6

[Function]clutter-stage-get-key-focus (self <clutter-stage>)
⇒ (ret <clutter-actor>)

[Method]get-key-focus
Retrieves the actor that is currently under key focus.

stage the <clutter-stage>

ret the actor with key focus, or the stage.

Since 0.6

Chapter 62: ClutterStage 207

[Function]clutter-stage-set-use-alpha (self <clutter-stage>)
(use alpha bool)

[Method]set-use-alpha
Sets whether the stage should honour the <"opacity"> and the alpha channel of the
<"color">

stage a <clutter-stage>

use-alpha whether the stage should honour the opacity or the alpha channel of the
stage color

Since 1.2

[Function]clutter-stage-get-use-alpha (self <clutter-stage>)
⇒ (ret bool)

[Method]get-use-alpha
Retrieves the value set using clutter-stage-set-use-alpha

stage a <clutter-stage>

ret ‘#t’ if the stage should honour the opacity and the alpha channel of the
stage color

Since 1.2

[Function]clutter-stage-set-minimum-size (self <clutter-stage>)
(width unsigned-int) (height unsigned-int)

[Method]set-minimum-size
Sets the minimum size for a stage window, if the default backend uses <clutter-

stage> inside a window

This is a convenience function, and it is equivalent to setting the <"min-width"> and
<"min-height"> on stage

If the current size of stage is smaller than the minimum size, the stage will be resized
to the new width and height

This function has no effect if stage is fullscreen

stage a <clutter-stage>

width width, in pixels

height height, in pixels

Since 1.2

[Function]clutter-stage-get-minimum-size (self <clutter-stage>)
⇒ (width unsigned-int) (height unsigned-int)

[Method]get-minimum-size
Retrieves the minimum size for a stage window as set using clutter-stage-set-

minimum-size.

The returned size may not correspond to the actual minimum size and it is specific
to the <clutter-stage> implementation inside the Clutter backend

stage a <clutter-stage>

Chapter 62: ClutterStage 208

width return location for the minimum width, in pixels, or ‘#f’.

height return location for the minimum height, in pixels, or ‘#f’.

Since 1.2

[Function]clutter-stage-set-no-clear-hint (self <clutter-stage>)
(no clear bool)

[Method]set-no-clear-hint
Sets whether the stage should clear itself at the beginning of each paint cycle or not.

Clearing the <clutter-stage> can be a costly operation, especially if the stage is
always covered - for instance, in a full-screen video player or in a game with a back-
ground texture.

This setting is a hint; Clutter might discard this hint depending on its internal state.

If parts of the stage are visible and you disable clearing you might end up with visual
artifacts while painting the contents of the stage.

stage a <clutter-stage>

no-clear ‘#t’ if the stage should not clear itself on every repaint cycle

Since 1.4

[Function]clutter-stage-get-no-clear-hint (self <clutter-stage>)
⇒ (ret bool)

[Method]get-no-clear-hint
Retrieves the hint set with clutter-stage-set-no-clear-hint

stage a <clutter-stage>

ret ‘#t’ if the stage should not clear itself on every paint cycle, and ‘#f’
otherwise

Since 1.4

[Function]clutter-stage-set-accept-focus (self <clutter-stage>)
(accept focus bool)

[Method]set-accept-focus
Sets whether the stage should accept the key focus when shown.

This function should be called before showing stage using clutter-actor-show.

stage a <clutter-stage>

accept-focus
‘#t’ to accept focus on show

Since 1.6

[Function]clutter-stage-get-accept-focus (self <clutter-stage>)
⇒ (ret bool)

[Method]get-accept-focus
Retrieves the value set with clutter-stage-set-accept-focus.

stage a <clutter-stage>

Chapter 62: ClutterStage 209

ret ‘#t’ if the <clutter-stage> should accept focus, and ‘#f’ otherwise

Since 1.6

[Function]clutter-stage-set-perspective (self <clutter-stage>)
(perspective <clutter-perspective>)

[Method]set-perspective
Sets the stage perspective. Using this function is not recommended because it will
disable Clutter’s attempts to generate an appropriate perspective based on the size
of the stage.

stage A <clutter-stage>

perspective
A <clutter-perspective>

[Function]clutter-stage-get-perspective (self <clutter-stage>)
⇒ (ret scm)

[Method]get-perspective
Retrieves the stage perspective.

stage A <clutter-stage>

perspective
return location for a <clutter-perspective>.

[Function]clutter-stage-set-title (self <clutter-stage>) (title mchars)
[Method]set-title

Sets the stage title.

stage A <clutter-stage>

title A utf8 string for the stage windows title.

Since 0.4

[Function]clutter-stage-get-title (self <clutter-stage>) ⇒ (ret mchars)
[Method]get-title

Gets the stage title.

stage A <clutter-stage>

ret pointer to the title string for the stage. The returned string is owned by
the actor and should not be modified or freed.

Since 0.4

[Function]clutter-stage-set-user-resizable (self <clutter-stage>)
(resizable bool)

[Method]set-user-resizable
Sets if the stage is resizable by user interaction (e.g. via window manager controls)

stage a <clutter-stage>

resizable whether the stage should be user resizable.

Since 0.4

Chapter 62: ClutterStage 210

[Function]clutter-stage-get-user-resizable (self <clutter-stage>)
⇒ (ret bool)

[Method]get-user-resizable
Retrieves the value set with clutter-stage-set-user-resizable.

stage a <clutter-stage>

ret ‘#t’ if the stage is resizable by the user.

Since 0.4

Chapter 63: ClutterState 211

63 ClutterState

State machine with animated transitions

63.1 Overview

<clutter-state> is an object controlling the tweening of properties on multiple actors
between a set of named states. <clutter-state-key>s define how the properties are ani-
mated. If the source state name for a key is NULL it is used for transition to the target
state unless a specific key exists for transitioning from the current state to the requested
state.

The following example defines a "base" and a "hover" state in a <clutter-state>

instance.

ClutterState *state = clutter_state_new ();

ClutterColor color = { 0, };

/* transition from any state to the "base" state */

clutter_color_from_string (&color, "rgb(255, 0, 0)");

clutter_state_set (state, NULL, "base",

actor, "color", CLUTTER_LINEAR, &color,

actor, "scale-x", CLUTTER_EASE_IN_BOUNCE, 1.0,

actor, "scale-y", CLUTTER_EASE_IN_BOUNCE, 1.0,

NULL);

/* transition from the "base" state to the "hover" state */

clutter_color_from_string (&color, "rgb(0, 0, 255)");

clutter_state_set (state, "base", "hover",

actor, "color", CLUTTER_LINEAR, &color,

actor, "scale-x", CLUTTER_EASE_OUT_BOUNCE, 1.7,

actor, "scale-y", CLUTTER_EASE_OUT_BOUNCE, 1.7,

NULL);

/* the default duration of any transition */

clutter_state_set_duration (state, NULL, NULL, 500);

/* set "base" as the initial state */

clutter_state_warp_to_state (state, "base");

The actor then uses the <clutter-state> to animate through the two states using
callbacks for the <"enter-event"> and <"leave-event"> signals.

static gboolean

on_enter (ClutterActor *actor,

ClutterEvent *event,

ClutterState *state)

Chapter 63: ClutterState 212

{

clutter_state_set_state (state, "hover");

return TRUE;

}

static gboolean

on_leave (ClutterActor *actor,

ClutterEvent *event,

ClutterState *state)

{

clutter_state_set_state (state, "base");

return TRUE;

}

63.2 ClutterState description for <clutter-script>

<clutter-state> defines a custom transitions property which allows describing the states.

The transitions property has the following syntax:

{

"transitions" : [

{

"source" : "<source-state>",

"target" : "<target-state>",

"duration" : <milliseconds>,

"keys" : [

[

"<object-id>",

"<property-name>",

"<easing-mode>",

"<final-value>",

],

[

"<object-id>",

"<property-name>",

"<easing-mode>",

"<final-value>",

<pre-delay>,

<post-delay>

],

...

]

},

{

Chapter 63: ClutterState 213

"source" : "<source-state>",

"target" : "<target-state>",

"duration" : <milliseconds>,

"animator" : "<animator-definition>"

},

...

]

}

Each element of the transitions array follows the same rules as clutter-state-set-key.

The source and target values control the source and target state of the transition. The
key and animator are mutually exclusive. The pre-delay and post-delay values are optional.

The example below is a translation into a <clutter-script> definition of the code in
the example above.

{

"id" : "button-state",

"type" : "ClutterState",

"duration" : 500,

"transitions" : [

{

"source" : "*",

"target" : "base",

"keys" : [

["button", "color", "linear", "rgb(255, 0, 0)"],

["button", "scale-x", "easeInBounce", 1.0],

["button", "scale-y", "easeInBounce", 1.0]

]

},

{

"source" : "base",

"target" : "hover",

"keys" : [

["button", "color", "linear", "rgb(0, 0, 255)"],

["button", "scale-x", "easeOutBounce", 1.7],

["button", "scale-y", "easeOutBounce", 1.7]

]

}

]

}

<clutter-state> is available since Clutter 1.4.

Chapter 63: ClutterState 214

63.3 Usage

[Function]clutter-state-new ⇒ (ret <clutter-state>)
Creates a new <clutter-state>

ret the newly create <clutter-state> instance

[Function]clutter-state-set-state (self <clutter-state>)
(target state name mchars) ⇒ (ret <clutter-timeline>)

[Method]set-state
Change the current state of <clutter-state> to target-state-name.

The state will animate during its transition, see <clutter-state-warp-to-state>

for animation-free state switching.

Setting a ‘#f’ state will stop the current animation and unset the current state, but
keys will be left intact.

state a <clutter-state>

target-state-name
the state to transition to

ret the <clutter-timeline> that drives the state transition. The returned
timeline is owned by the <clutter-state> and it should not be unrefer-
enced.

Since 1.4

[Function]clutter-state-get-state (self <clutter-state>) ⇒ (ret mchars)
[Method]get-state

Queries the currently set target state.

During a transition this function will return the target of the transition.

This function is useful when called from handlers of the <"completed"> signal.

state a <clutter-state>

ret a string containing the target state. The returned string is owned by the
<clutter-state> and should not be modified or freed

Since 1.4

[Function]clutter-state-warp-to-state (self <clutter-state>)
(target state name mchars) ⇒ (ret <clutter-timeline>)

[Method]warp-to-state
Change to the specified target state immediately with no animation.

See clutter-state-set-state.

state a <clutter-state>

target-state-name
the state to transition to

ret the <clutter-timeline> that drives the state transition. The returned
timeline is owned by the <clutter-state> and it should not be unrefer-
enced.

Chapter 63: ClutterState 215

Since 1.4

[Function]clutter-state-set-key (self <clutter-state>)
(source state name mchars) (target state name mchars) (object <gobject>)
(property name mchars) (mode unsigned-int) (value <gvalue>)
(pre delay double) (post delay double) ⇒ (ret <clutter-state>)

[Method]set-key
Sets one specific end key for a state name, object, property-name combination.

state a <clutter-state> instance.

source-state-name
the source transition to specify transition for, or ‘#f’ to specify the default
fallback when a more specific source state doesn’t exist.

target-state-name
the name of the transition to set a key value for.

object the <gobject> to set a key for

property-name
the property to set a key for

mode the id of the alpha function to use

value the value for property name of object in state name

pre-delay relative time of the transition to be idle in the beginning of the transition

post-delay relative time of the transition to be idle in the end of the transition

ret the <clutter-state> instance, allowing chaining of multiple calls.

Since 1.4

[Function]clutter-state-set-duration (self <clutter-state>)
(source state name mchars) (target state name mchars)
(duration unsigned-int)

[Method]set-duration
Sets the duration of a transition.

If both state names are ‘#f’ the default duration for state is set.

If only target-state-name is specified, the passed duration becomes the default dura-
tion for transitions to the target state.

If both states names are specified, the passed duration only applies to the specified
transition.

state a <clutter-state>

source-state-name
the name of the source state, or ‘#f’.

target-state-name
the name of the target state, or ‘#f’.

duration the duration of the transition, in milliseconds

Since 1.4

Chapter 63: ClutterState 216

[Function]clutter-state-get-duration (self <clutter-state>)
(source state name mchars) (target state name mchars)
⇒ (ret unsigned-int)

[Method]get-duration
Queries the duration used for transitions between a source and target state pair

The semantics for the query are the same as the semantics used for setting the duration
with clutter-state-set-duration

state a <clutter-state>

source-state-name
the name of the source state to get the duration of, or ‘#f’.

target-state-name
the name of the source state to get the duration of, or ‘#f’.

ret the duration, in milliseconds

Since 1.4

[Function]clutter-state-get-states (self <clutter-state>)
⇒ (ret glist-of)

[Method]get-states
Gets a list of all the state names managed by this <clutter-state>.

state a <clutter-state> instance.

ret a newly allocated <g-list> of state names. The contents of the returned
<g-list> are owned by the <clutter-state> and should not be modified
or freed. Use g-list-free to free the resources allocated by the returned
list when done using it.

Since 1.4

[Function]clutter-state-get-keys (self <clutter-state>)
(source state name mchars) (target state name mchars) (object <gobject>)
(property name mchars) ⇒ (ret glist-of)

[Method]get-keys
Returns a list of pointers to opaque structures with accessor functions that describe
the keys added to an animator.

state a <clutter-state> instance.

source-state-name
the source transition name to query, or ‘#f’ for all source states.

target-state-name
the target transition name to query, or ‘#f’ for all target states.

object the specific object instance to list keys for, or ‘#f’ for all managed objects.

property-name
the property name to search for, or ‘#f’ for all properties.

Chapter 63: ClutterState 217

ret a newly allocated <g-list> of <clutter-state-key>s. The contents of
the returned list are owned by the <clutter-state> and should not be
modified or freed. Use g-list-free to free the resources allocated by
the returned list when done using it.

Since 1.4

[Function]clutter-state-remove-key (self <clutter-state>)
(source state name mchars) (target state name mchars) (object <gobject>)
(property name mchars)

[Method]remove-key
Removes all keys matching the search criteria passed in arguments.

state a <clutter-state> instance.

source-state-name
the source state name to query, or ‘#f’ for all source states.

target-state-name
the target state name to query, or ‘#f’ for all target states.

object the specific object instance to list keys for, or ‘#f’ for all managed objects.

property-name
the property name to search for, or ‘#f’ for all properties.

Since 1.4

[Function]clutter-state-get-timeline (self <clutter-state>)
⇒ (ret <clutter-timeline>)

[Method]get-timeline
Gets the timeline driving the <clutter-state>

state a <clutter-state>

ret the <clutter-timeline> that drives the state change animations. The
returned timeline is owned by the <clutter-state> and it should not be
unreferenced directly.

Since 1.4

[Function]clutter-state-set-animator (self <clutter-state>)
(source state name mchars) (target state name mchars)
(animator <clutter-animator>)

[Method]set-animator
Specifies a <clutter-animator> to be used when transitioning between the two
named states.

The animator allows specifying a transition between the state that is more elabo-
rate than the basic transitions allowed by the tweening of properties defined in the
<clutter-state> keys.

If animator is ‘#f’ it will unset an existing animator.

<clutter-state> will take a reference on the passed animator, if any

Chapter 63: ClutterState 218

state a <clutter-state> instance.

source-state-name
the name of a source state

target-state-name
the name of a target state

animator a <clutter-animator> instance, or ‘#f’ to unset an existing <clutter-

animator>.

Since 1.4

[Function]clutter-state-get-animator (self <clutter-state>)
(source state name mchars) (target state name mchars)
⇒ (ret <clutter-animator>)

[Method]get-animator
Retrieves the <clutter-animator> that is being used for transitioning between the
two states, if any has been set

state a <clutter-state> instance.

source-state-name
the name of a source state

target-state-name
the name of a target state

ret a <clutter-animator> instance, or ‘#f’.

Since 1.4

[Function]clutter-state-key-get-object (self <clutter-state-key>)
⇒ (ret <gobject>)

Retrieves the object instance this <clutter-state-key> applies to.

state-key a <clutter-state-key>

ret the object this state key applies to.

Since 1.4

[Function]clutter-state-key-get-property-name
(self <clutter-state-key>) ⇒ (ret mchars)

Retrieves the name of the property this <clutter-state-key> applies to

state-key a <clutter-state-key>

ret the name of the property. The returned string is owned by the <clutter-
state-key> and should never be modified or freed

Since 1.4

[Function]clutter-state-key-get-mode (self <clutter-state-key>)
⇒ (ret unsigned-long)

Retrieves the easing mode used for state-key.

Chapter 63: ClutterState 219

state-key a <clutter-state-key>

ret the mode of a <clutter-state-key>

Since 1.4

[Function]clutter-state-key-get-value (self <clutter-state-key>)
(value <gvalue>) ⇒ (ret bool)

Retrieves a copy of the value for a <clutter-state-key>.

The <gvalue> needs to be already initialized for the value type of the property or to
a type that allow transformation from the value type of the key.

Use g-value-unset when done.

state-key a <clutter-state-key>

value a <gvalue> initialized with the correct type for the state-key

ret ‘#t’ if the value was successfully retrieved, and ‘#f’ otherwise

Since 1.4

[Function]clutter-state-key-get-property-type
(self <clutter-state-key>) ⇒ (ret <gtype>)

Retrieves the <g-type> of the property a key applies to

You can use this type to initialize the <gvalue> to pass to clutter-state-key-get-

value

key a <clutter-state-key>

ret the <g-type> of the property

Since 1.4

[Function]clutter-state-key-get-pre-delay (self <clutter-state-key>)
⇒ (ret double)

Retrieves the pause before transitioning starts as a fraction of the total transition
time.

state-key a <clutter-state-key>

ret the pre delay used before starting the transition.

Since 1.4

[Function]clutter-state-key-get-post-delay (self <clutter-state-key>)
⇒ (ret double)

Retrieves the duration of the pause after transitioning is complete as a fraction of the
total transition time.

state-key a <clutter-state-key>

ret the post delay, used after doing the transition.

Since 1.4

Chapter 64: ClutterSwipeAction 220

64 ClutterSwipeAction

Action for swipe gestures

64.1 Overview

<clutter-swipe-action> is a sub-class of <clutter-gesture-action> that implements
the logic for recognizing swipe gestures.

64.2 Usage

[Function]clutter-swipe-action-new ⇒ (ret <clutter-action>)
Creates a new <clutter-swipe-action> instance

ret the newly created <clutter-swipe-action>

Since 1.8

Chapter 65: ClutterTableLayout 221

65 ClutterTableLayout

A layout manager arranging children in rows and columns

65.1 Overview

The <clutter-table-layout> is a <clutter-layout-manager> implementing the follow-
ing layout policy:

•
•
•
•
•
•

children are arranged in a table

each child specifies the specific row and column cell to appear;

a child can also set a span, and this way, take more than one cell both horizontally and
vertically;

each child will be allocated to its natural size or, if set to expand, the available size;

if a child is set to fill on either (or both) axis, its allocation will match all the available
size; the fill layout property only makes sense if the expand property is also set;

if a child is set to expand but not to fill then it is possible to control the alignment using
the horizontal and vertical alignment layout properties.

It is possible to control the spacing between children of a <clutter-table-layout>

by using clutter-table-layout-set-row-spacing and clutter-table-layout-set-

column-spacing.

In order to set the layout properties when packing an actor inside a <clutter-table-

layout> you should use the clutter-table-layout-pack function.

A <clutter-table-layout> can use animations to transition between different values of
the layout management properties; the easing mode and duration used for the animations
are controlled by the <"easing-mode"> and <"easing-duration"> properties and their
accessor functions.

(The missing figure, table-layout-image

The image shows a <clutter-table-layout>.

<clutter-table-layout> is available since Clutter 1.4

65.2 Usage

[Function]clutter-table-layout-new ⇒ (ret <clutter-layout-manager>)
Creates a new <clutter-table-layout> layout manager

ret the newly created <clutter-table-layout>

Since 1.4

Chapter 65: ClutterTableLayout 222

[Function]clutter-table-layout-get-row-count
(self <clutter-table-layout>) ⇒ (ret int)

[Method]get-row-count
Retrieve the current number rows in the layout

layout A <clutter-table-layout>

ret the number of rows

Since 1.4

[Function]clutter-table-layout-pack (self <clutter-table-layout>)
(actor <clutter-actor>) (column int) (row int)

[Method]pack
Packs actor inside the <clutter-container> associated to layout at the given row
and column.

layout a <clutter-table-layout>

actor a <clutter-actor>

column the column the actor should be put, or -1 to append

row the row the actor should be put, or -1 to append

Since 1.4

[Function]clutter-table-layout-set-alignment
(self <clutter-table-layout>) (actor <clutter-actor>)
(x align <clutter-table-alignment>)
(y align <clutter-table-alignment>)

[Method]set-alignment
Sets the horizontal and vertical alignment policies for actor inside layout

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

x-align Horizontal alignment policy for actor

y-align Vertical alignment policy for actor

Since 1.4

[Function]clutter-table-layout-get-alignment
(self <clutter-table-layout>) (actor <clutter-actor>)
⇒ (x align <clutter-table-alignment>)
(y align <clutter-table-alignment>)

[Method]get-alignment
Retrieves the horizontal and vertical alignment policies for actor as set using clutter-
table-layout-pack or clutter-table-layout-set-alignment.

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

x-align return location for the horizontal alignment policy.

Chapter 65: ClutterTableLayout 223

y-align return location for the vertical alignment policy.

Since 1.4

[Function]clutter-table-layout-set-expand (self <clutter-table-layout>)
(actor <clutter-actor>) (x expand bool) (y expand bool)

[Method]set-expand
Sets the horizontal and vertical expand policies for actor inside layout

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

x-expand whether actor should allocate extra space horizontally

y-expand whether actor should allocate extra space vertically

Since 1.4

[Function]clutter-table-layout-get-expand (self <clutter-table-layout>)
(actor <clutter-actor>) ⇒ (x expand bool) (y expand bool)

[Method]get-expand
Retrieves the horizontal and vertical expand policies for actor as set using clutter-

table-layout-pack or clutter-table-layout-set-expand

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

x-expand return location for the horizontal expand policy.

y-expand return location for the vertical expand policy.

Since 1.4

[Function]clutter-table-layout-set-fill (self <clutter-table-layout>)
(actor <clutter-actor>) (x fill bool) (y fill bool)

[Method]set-fill
Sets the horizontal and vertical fill policies for actor inside layout

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

x-fill whether actor should fill horizontally the allocated space

y-fill whether actor should fill vertically the allocated space

Since 1.4

[Function]clutter-table-layout-get-fill (self <clutter-table-layout>)
(actor <clutter-actor>) ⇒ (x fill bool) (y fill bool)

[Method]get-fill
Retrieves the horizontal and vertical fill policies for actor as set using clutter-table-
layout-pack or clutter-table-layout-set-fill

layout a <clutter-table-layout>

Chapter 65: ClutterTableLayout 224

actor a <clutter-actor> child of layout

x-fill return location for the horizontal fill policy.

y-fill return location for the vertical fill policy.

Since 1.4

[Function]clutter-table-layout-get-span (self <clutter-table-layout>)
(actor <clutter-actor>) ⇒ (column span int) (row span int)

[Method]get-span
Retrieves the row and column span for actor as set using clutter-table-layout-

pack or clutter-table-layout-set-span

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

column-span
return location for the col span.

row-span return location for the row span.

Since 1.4

[Function]clutter-table-layout-set-span (self <clutter-table-layout>)
(actor <clutter-actor>) (column span int) (row span int)

[Method]set-span
Sets the row and column span for actor inside layout

layout a <clutter-table-layout>

actor a <clutter-actor> child of layout

column-span
Column span for actor

row-span Row span for actor

Since 1.4

Chapter 66: ClutterTextBuffer 225

66 ClutterTextBuffer

Text buffer for ClutterText

66.1 Overview

The <clutter-text-buffer> class contains the actual text displayed in a <clutter-text>
widget.

A single <clutter-text-buffer> object can be shared by multiple <clutter-text>

widgets which will then share the same text content, but not the cursor position, visibility
attributes, icon etc.

<clutter-text-buffer> may be derived from. Such a derived class might allow text
to be stored in an alternate location, such as non-pageable memory, useful in the case of
important passwords. Or a derived class could integrate with an application’s concept of
undo/redo.

66.2 Usage

[Function]clutter-text-buffer-new ⇒ (ret <clutter-text-buffer>)
Create a new ClutterTextBuffer object.

ret A new ClutterTextBuffer object.

Since 1.10

[Function]clutter-text-buffer-new-with-text (text mchars)
(text len ssize_t) ⇒ (ret <clutter-text-buffer>)

Create a new ClutterTextBuffer object with some text.

text initial buffer text.

text-len initial buffer text length, or -1 for null-terminated.

ret A new ClutterTextBuffer object.

Since 1.10

[Function]clutter-text-buffer-set-text (self <clutter-text-buffer>)
(chars mchars) (n chars int)

[Method]set-text
Sets the text in the buffer.

This is roughly equivalent to calling clutter-text-buffer-delete-text and
clutter-text-buffer-insert-text.

Note that n-chars is in characters, not in bytes.

buffer a <clutter-text-buffer>

chars the new text

n-chars the number of characters in text, or -1

Since 1.10

Chapter 66: ClutterTextBuffer 226

[Function]clutter-text-buffer-get-text (self <clutter-text-buffer>)
⇒ (ret mchars)

[Method]get-text
Retrieves the contents of the buffer.

The memory pointer returned by this call will not change unless this object emits a
signal, or is finalized.

buffer a <clutter-text-buffer>

ret a pointer to the contents of the widget as a string. This string points to
internally allocated storage in the buffer and must not be freed, modified
or stored.

Since 1.10

[Function]clutter-text-buffer-get-bytes (self <clutter-text-buffer>)
⇒ (ret size_t)

[Method]get-bytes
Retrieves the length in bytes of the buffer. See clutter-text-buffer-get-length.

buffer a <clutter-text-buffer>

ret The byte length of the buffer.

Since 1.10

[Function]clutter-text-buffer-get-length (self <clutter-text-buffer>)
⇒ (ret unsigned-int)

[Method]get-length
Retrieves the length in characters of the buffer.

buffer a <clutter-text-buffer>

ret The number of characters in the buffer.

Since 1.10

[Function]clutter-text-buffer-set-max-length
(self <clutter-text-buffer>) (max length int)

[Method]set-max-length
Sets the maximum allowed length of the contents of the buffer. If the current contents
are longer than the given length, then they will be truncated to fit.

buffer a <clutter-text-buffer>

max-length
the maximum length of the entry buffer, or 0 for no maximum. (other
than the maximum length of entries.) The value passed in will be clamped
to the range [0, ‘CLUTTER_TEXT_BUFFER_MAX_SIZE’].

Since 1.10

Chapter 66: ClutterTextBuffer 227

[Function]clutter-text-buffer-get-max-length
(self <clutter-text-buffer>) ⇒ (ret int)

[Method]get-max-length
Retrieves the maximum allowed length of the text in buffer. See clutter-text-

buffer-set-max-length.

buffer a <clutter-text-buffer>

ret the maximum allowed number of characters in <clutter-text-buffer>,
or 0 if there is no maximum.

Since 1.10

[Function]clutter-text-buffer-insert-text (self <clutter-text-buffer>)
(position unsigned-int) (chars mchars) (n chars int)
⇒ (ret unsigned-int)

[Method]insert-text
Inserts n-chars characters of chars into the contents of the buffer, at position position.

If n-chars is negative, then characters from chars will be inserted until a
null-terminator is found. If position or n-chars are out of bounds, or the maximum
buffer text length is exceeded, then they are coerced to sane values.

Note that the position and length are in characters, not in bytes.

buffer a <clutter-text-buffer>

position the position at which to insert text.

chars the text to insert into the buffer.

n-chars the length of the text in characters, or -1

ret The number of characters actually inserted.

Since 1.10

[Function]clutter-text-buffer-delete-text (self <clutter-text-buffer>)
(position unsigned-int) (n chars int) ⇒ (ret unsigned-int)

[Method]delete-text
Deletes a sequence of characters from the buffer. n-chars characters are deleted start-
ing at position. If n-chars is negative, then all characters until the end of the text are
deleted.

If position or n-chars are out of bounds, then they are coerced to sane values.

Note that the positions are specified in characters, not bytes.

buffer a <clutter-text-buffer>

position position at which to delete text

n-chars number of characters to delete

ret The number of characters deleted.

Since 1.10

Chapter 67: ClutterText 228

67 ClutterText

An actor for displaying and editing text

67.1 Overview

<clutter-text> is an actor that displays custom text using Pango as the text rendering
engine.

<clutter-text> also allows inline editing of the text if the actor is set editable using
clutter-text-set-editable.

Selection using keyboard or pointers can be enabled using clutter-text-set-

selectable.

<clutter-text> is available since Clutter 1.0

67.2 Usage

[Function]clutter-text-new ⇒ (ret <clutter-actor>)
Creates a new <clutter-text> actor. This actor can be used to display and edit
text.

ret the newly created <clutter-text> actor

Since 1.0

[Function]clutter-text-new-full (font name mchars) (text mchars)
(color <clutter-color>) ⇒ (ret <clutter-actor>)

Creates a new <clutter-text> actor, using font-name as the font description; text
will be used to set the contents of the actor; and color will be used as the color to
render text.

This function is equivalent to calling clutter-text-new, clutter-text-set-font-
name, clutter-text-set-text and clutter-text-set-color.

font-name a string with a font description

text the contents of the actor

color the color to be used to render text

ret the newly created <clutter-text> actor

Since 1.0

[Function]clutter-text-new-with-text (font name mchars) (text mchars)
⇒ (ret <clutter-actor>)

Creates a new <clutter-text> actor, using font-name as the font description; text
will be used to set the contents of the actor.

This function is equivalent to calling clutter-text-new, clutter-text-set-font-
name, and clutter-text-set-text.

font-name a string with a font description.

text the contents of the actor

Chapter 67: ClutterText 229

ret the newly created <clutter-text> actor

Since 1.0

[Function]clutter-text-new-with-buffer (buffer <clutter-text-buffer>)
⇒ (ret <clutter-actor>)

Creates a new entry with the specified text buffer.

buffer The buffer to use for the new <clutter-text>.

ret a new <clutter-text>

Since 1.10

[Function]clutter-text-set-buffer (self <clutter-text>)
(buffer <clutter-text-buffer>)

[Method]set-buffer
Set the <clutter-text-buffer> object which holds the text for this widget.

self a <clutter-text>

buffer a <clutter-text-buffer>

Since 1.10

[Function]clutter-text-get-buffer (self <clutter-text>)
⇒ (ret <clutter-text-buffer>)

[Method]get-buffer
Get the <clutter-text-buffer> object which holds the text for this widget.

self a <clutter-text>

ret A <gtk-entry-buffer> object.

Since 1.10

[Function]clutter-text-set-text (self <clutter-text>) (text mchars)
[Method]set-text

Sets the contents of a <clutter-text> actor.

If the <"use-markup"> property was set to ‘#t’ it will be reset to ‘#f’ as a side effect.
If you want to maintain the <"use-markup"> you should use the clutter-text-set-
markup function instead

self a <clutter-text>

text the text to set. Passing ‘#f’ is the same as passing "" (the empty string).

Since 1.0

[Function]clutter-text-set-markup (self <clutter-text>) (markup mchars)
[Method]set-markup

Sets markup as the contents of a <clutter-text>.

This is a convenience function for setting a string containing Pango markup, and it
is logically equivalent to:

Chapter 67: ClutterText 230

/* the order is important */

clutter_text_set_text (CLUTTER_TEXT (actor), markup);

clutter_text_set_use_markup (CLUTTER_TEXT (actor), TRUE);

self a <clutter-text>

markup a string containing Pango markup. Passing ‘#f’ is the same as passing
"" (the empty string).

Since 1.0

[Function]clutter-text-get-text (self <clutter-text>) ⇒ (ret mchars)
[Method]get-text

Retrieves a pointer to the current contents of a <clutter-text> actor.

If you need a copy of the contents for manipulating, either use g-strdup on the
returned string, or use:

copy = clutter_text_get_chars (text, 0, -1);

Which will return a newly allocated string.

If the <clutter-text> actor is empty, this function will return an empty string, and
not ‘#f’.

self a <clutter-text>

ret the contents of the actor. The returned string is owned by the <clutter-
text> actor and should never be modified or freed.

Since 1.0

[Function]clutter-text-set-activatable (self <clutter-text>)
(activatable bool)

[Method]set-activatable
Sets whether a <clutter-text> actor should be activatable.

An activatable <clutter-text> actor will emit the <"activate"> signal whenever
the ’Enter’ (or ’Return’) key is pressed; if it is not activatable, a new line will be
appended to the current content.

An activatable <clutter-text> must also be set as editable using clutter-text-

set-editable.

self a <clutter-text>

activatable
whether the <clutter-text> actor should be activatable

Since 1.0

[Function]clutter-text-get-activatable (self <clutter-text>)
⇒ (ret bool)

[Method]get-activatable
Retrieves whether a <clutter-text> is activatable or not.

Chapter 67: ClutterText 231

self a <clutter-text>

ret ‘#t’ if the actor is activatable

Since 1.0

[Function]clutter-text-set-attributes (self <clutter-text>)
(attrs <pango-attr-list>)

[Method]set-attributes
Sets the attributes list that are going to be applied to the <clutter-text> contents.

The <clutter-text> actor will take a reference on the <pango-attr-list> passed
to this function.

self a <clutter-text>

attrs a <pango-attr-list> or ‘#f’ to unset the attributes

Since 1.0

[Function]clutter-text-get-attributes (self <clutter-text>)
⇒ (ret <pango-attr-list>)

[Method]get-attributes
Gets the attribute list that was set on the <clutter-text> actor clutter-text-

set-attributes, if any.

self a <clutter-text>

ret the attribute list, or ‘#f’ if none was set. The returned value is owned by
the <clutter-text> and should not be unreferenced.

Since 1.0

[Function]clutter-text-set-color (self <clutter-text>)
(color <clutter-color>)

[Method]set-color
Sets the color of the contents of a <clutter-text> actor.

The overall opacity of the <clutter-text> actor will be the result of the alpha value
of color and the composited opacity of the actor itself on the scenegraph, as returned
by clutter-actor-get-paint-opacity.

self a <clutter-text>

color a <clutter-color>

Since 1.0

[Function]clutter-text-get-color (self <clutter-text>)
(color <clutter-color>)

[Method]get-color
Retrieves the text color as set by clutter-text-set-color.

self a <clutter-text>

color return location for a <clutter-color>.

Since 1.0

Chapter 67: ClutterText 232

[Function]clutter-text-set-ellipsize (self <clutter-text>)
(mode <pango-ellipsize-mode>)

[Method]set-ellipsize
Sets the mode used to ellipsize (add an ellipsis: "...") to the text if there is not enough
space to render the entire contents of a <clutter-text> actor

self a <clutter-text>

mode a <pango-ellipsize-mode>

Since 1.0

[Function]clutter-text-get-ellipsize (self <clutter-text>)
⇒ (ret <pango-ellipsize-mode>)

[Method]get-ellipsize
Returns the ellipsizing position of a <clutter-text> actor, as set by clutter-text-

set-ellipsize.

self a <clutter-text>

ret <pango-ellipsize-mode>

Since 1.0

[Function]clutter-text-set-font-name (self <clutter-text>)
(font name mchars)

[Method]set-font-name
Sets the font used by a <clutter-text>. The font-name string must either be ‘#f’,
which means that the font name from the default <clutter-backend> will be used;
or be something that can be parsed by the pango-font-description-from-string

function, like:

clutter_text_set_font_name (text, "Sans 10pt");

clutter_text_set_font_name (text, "Serif 16px");

clutter_text_set_font_name (text, "Helvetica 10");

self a <clutter-text>

font-name a font name, or ‘#f’ to set the default font name.

Since 1.0

[Function]clutter-text-get-font-name (self <clutter-text>)
⇒ (ret mchars)

[Method]get-font-name
Retrieves the font name as set by clutter-text-set-font-name.

self a <clutter-text>

ret a string containing the font name. The returned string is owned by the
<clutter-text> actor and should not be modified or freed

Since 1.0

Chapter 67: ClutterText 233

[Function]clutter-text-set-font-description (self <clutter-text>)
(font desc <pango-font-description>)

[Method]set-font-description
Sets font-desc as the font description for a <clutter-text>

The <pango-font-description> is copied by the <clutter-text> actor so you can
safely call pango-font-description-free on it after calling this function.

self a <clutter-text>

font-desc a <pango-font-description>

Since 1.2

[Function]clutter-text-set-password-char (self <clutter-text>)
(wc unsigned-int32)

[Method]set-password-char
Sets the character to use in place of the actual text in a password text actor.

If wc is 0 the text will be displayed as it is entered in the <clutter-text> actor.

self a <clutter-text>

wc a Unicode character, or 0 to unset the password character

Since 1.0

[Function]clutter-text-get-password-char (self <clutter-text>)
⇒ (ret unsigned-int32)

[Method]get-password-char
Retrieves the character to use in place of the actual text as set by clutter-text-

set-password-char.

self a <clutter-text>

ret a Unicode character or 0 if the password character is not set

Since 1.0

[Function]clutter-text-set-justify (self <clutter-text>) (justify bool)
[Method]set-justify

Sets whether the text of the <clutter-text> actor should be justified on both mar-
gins. This setting is ignored if Clutter is compiled against Pango < 1.18.

self a <clutter-text>

justify whether the text should be justified

Since 1.0

[Function]clutter-text-get-justify (self <clutter-text>) ⇒ (ret bool)
[Method]get-justify

Retrieves whether the <clutter-text> actor should justify its contents on both mar-
gins.

self a <clutter-text>

ret ‘#t’ if the text should be justified

Since 0.6

Chapter 67: ClutterText 234

[Function]clutter-text-get-layout (self <clutter-text>)
⇒ (ret <pango-layout>)

[Method]get-layout
Retrieves the current <pango-layout> used by a <clutter-text> actor.

self a <clutter-text>

ret a <pango-layout>. The returned object is owned by the <clutter-text>
actor and should not be modified or freed.

Since 1.0

[Function]clutter-text-set-line-alignment (self <clutter-text>)
(alignment <pango-alignment>)

[Method]set-line-alignment
Sets the way that the lines of a wrapped label are aligned with respect to each other.
This does not affect the overall alignment of the label within its allocated or specified
width.

To align a <clutter-text> actor you should add it to a container that supports
alignment, or use the anchor point.

self a <clutter-text>

alignment A <pango-alignment>

Since 1.0

[Function]clutter-text-get-line-alignment (self <clutter-text>)
⇒ (ret <pango-alignment>)

[Method]get-line-alignment
Retrieves the alignment of a <clutter-text>, as set by clutter-text-set-line-

alignment.

self a <clutter-text>

ret a <pango-alignment>

Since 1.0

[Function]clutter-text-set-line-wrap (self <clutter-text>)
(line wrap bool)

[Method]set-line-wrap
Sets whether the contents of a <clutter-text> actor should wrap, if they don’t fit
the size assigned to the actor.

self a <clutter-text>

line-wrap whether the contents should wrap

Since 1.0

[Function]clutter-text-get-line-wrap (self <clutter-text>) ⇒ (ret bool)
[Method]get-line-wrap

Retrieves the value set using clutter-text-set-line-wrap.

Chapter 67: ClutterText 235

self a <clutter-text>

ret ‘#t’ if the <clutter-text> actor should wrap its contents

Since 1.0

[Function]clutter-text-set-line-wrap-mode (self <clutter-text>)
(wrap mode <pango-wrap-mode>)

[Method]set-line-wrap-mode
If line wrapping is enabled (see clutter-text-set-line-wrap) this function controls
how the line wrapping is performed. The default is ‘PANGO_WRAP_WORD’ which means
wrap on word boundaries.

self a <clutter-text>

wrap-mode
the line wrapping mode

Since 1.0

[Function]clutter-text-get-line-wrap-mode (self <clutter-text>)
⇒ (ret <pango-wrap-mode>)

[Method]get-line-wrap-mode
Retrieves the line wrap mode used by the <clutter-text> actor.

See clutter-text-set-line-wrap-mode.

self a <clutter-text>

ret the wrap mode used by the <clutter-text>

Since 1.0

[Function]clutter-text-set-max-length (self <clutter-text>) (max int)
[Method]set-max-length

Sets the maximum allowed length of the contents of the actor. If the current contents
are longer than the given length, then they will be truncated to fit.

self a <clutter-text>

max the maximum number of characters allowed in the text actor; 0 to disable
or -1 to set the length of the current string

Since 1.0

[Function]clutter-text-get-max-length (self <clutter-text>) ⇒ (ret int)
[Method]get-max-length

Gets the maximum length of text that can be set into a text actor.

See clutter-text-set-max-length.

self a <clutter-text>

ret the maximum number of characters.

Since 1.0

Chapter 67: ClutterText 236

[Function]clutter-text-set-selectable (self <clutter-text>)
(selectable bool)

[Method]set-selectable
Sets whether a <clutter-text> actor should be selectable.

A selectable <clutter-text> will allow selecting its contents using the pointer or the
keyboard.

self a <clutter-text>

selectable whether the <clutter-text> actor should be selectable

Since 1.0

[Function]clutter-text-get-selectable (self <clutter-text>) ⇒ (ret bool)
[Method]get-selectable

Retrieves whether a <clutter-text> is selectable or not.

self a <clutter-text>

ret ‘#t’ if the actor is selectable

Since 1.0

[Function]clutter-text-set-selection (self <clutter-text>)
(start pos ssize_t) (end pos ssize_t)

[Method]set-selection
Selects the region of text between start-pos and end-pos.

This function changes the position of the cursor to match start-pos and the selection
bound to match end-pos.

self a <clutter-text>

start-pos start of the selection, in characters

end-pos end of the selection, in characters

Since 1.0

[Function]clutter-text-get-selection (self <clutter-text>)
⇒ (ret mchars)

[Method]get-selection
Retrieves the currently selected text.

self a <clutter-text>

ret a newly allocated string containing the currently selected text, or ‘#f’.
Use g-free to free the returned string.

Since 1.0

[Function]clutter-text-set-selection-bound (self <clutter-text>)
(selection bound int)

[Method]set-selection-bound
Sets the other end of the selection, starting from the current cursor position.

If selection-bound is -1, the selection unset.

Chapter 67: ClutterText 237

self a <clutter-text>

selection-bound
the position of the end of the selection, in characters

Since 1.0

[Function]clutter-text-get-selection-bound (self <clutter-text>)
⇒ (ret int)

[Method]get-selection-bound
Retrieves the other end of the selection of a <clutter-text> actor, in characters
from the current cursor position.

self a <clutter-text>

ret the position of the other end of the selection

Since 1.0

[Function]clutter-text-set-single-line-mode (self <clutter-text>)
(single line bool)

[Method]set-single-line-mode
Sets whether a <clutter-text> actor should be in single line mode or not. Only
editable <clutter-text>s can be in single line mode.

A text actor in single line mode will not wrap text and will clip the visible area to
the predefined size. The contents of the text actor will scroll to display the end of
the text if its length is bigger than the allocated width.

When setting the single line mode the <"activatable"> property is also set as a
side effect. Instead of entering a new line character, the text actor will emit the
<"activate"> signal.

self a <clutter-text>

single-line whether to enable single line mode

Since 1.0

[Function]clutter-text-get-single-line-mode (self <clutter-text>)
⇒ (ret bool)

[Method]get-single-line-mode
Retrieves whether the <clutter-text> actor is in single line mode.

self a <clutter-text>

ret ‘#t’ if the <clutter-text> actor is in single line mode

Since 1.0

[Function]clutter-text-set-use-markup (self <clutter-text>) (setting bool)
[Method]set-use-markup

Sets whether the contents of the <clutter-text> actor contains markup in Pango’s
text markup language.

Setting <"use-markup"> on an editable <clutter-text> will not have any effect
except hiding the markup.

See also <"use-markup">.

Chapter 67: ClutterText 238

self a <clutter-text>

setting ‘#t’ if the text should be parsed for markup.

Since 1.0

[Function]clutter-text-get-use-markup (self <clutter-text>) ⇒ (ret bool)
[Method]get-use-markup

Retrieves whether the contents of the <clutter-text> actor should be parsed for the
Pango text markup.

self a <clutter-text>

ret ‘#t’ if the contents will be parsed for markup

Since 1.0

[Function]clutter-text-set-editable (self <clutter-text>) (editable bool)
[Method]set-editable

Sets whether the <clutter-text> actor should be editable.

An editable <clutter-text> with key focus set using clutter-actor-grab-key-

focus or clutter-stage-set-key-focus will receive key events and will update its
contents accordingly.

self a <clutter-text>

editable whether the <clutter-text> should be editable

Since 1.0

[Function]clutter-text-get-editable (self <clutter-text>) ⇒ (ret bool)
[Method]get-editable

Retrieves whether a <clutter-text> is editable or not.

self a <clutter-text>

ret ‘#t’ if the actor is editable

Since 1.0

[Function]clutter-text-insert-text (self <clutter-text>) (text mchars)
(position ssize_t)

[Method]insert-text
Inserts text into a <clutter-actor> at the given position.

If position is a negative number, the text will be appended at the end of the current
contents of the <clutter-text>.

The position is expressed in characters, not in bytes.

self a <clutter-text>

text the text to be inserted

position the position of the insertion, or -1

Since 1.0

Chapter 67: ClutterText 239

[Function]clutter-text-insert-unichar (self <clutter-text>)
(wc unsigned-int32)

[Method]insert-unichar
Inserts wc at the current cursor position of a <clutter-text> actor.

self a <clutter-text>

wc a Unicode character

Since 1.0

[Function]clutter-text-delete-chars (self <clutter-text>)
(n chars unsigned-int)

[Method]delete-chars
Deletes n-chars inside a <clutter-text> actor, starting from the current cursor po-
sition.

Somewhat awkwardly, the cursor position is decremented by the same number of
characters you’ve deleted.

self a <clutter-text>

n-chars the number of characters to delete

Since 1.0

[Function]clutter-text-delete-text (self <clutter-text>)
(start pos ssize_t) (end pos ssize_t)

[Method]delete-text
Deletes the text inside a <clutter-text> actor between start-pos and end-pos.

The starting and ending positions are expressed in characters, not in bytes.

self a <clutter-text>

start-pos starting position

end-pos ending position

Since 1.0

[Function]clutter-text-delete-selection (self <clutter-text>)
⇒ (ret bool)

[Method]delete-selection
Deletes the currently selected text

This function is only useful in subclasses of <clutter-text>

self a <clutter-text>

ret ‘#t’ if text was deleted or if the text actor is empty, and ‘#f’ otherwise

Since 1.0

[Function]clutter-text-get-chars (self <clutter-text>) (start pos ssize_t)
(end pos ssize_t) ⇒ (ret mchars)

[Method]get-chars
Retrieves the contents of the <clutter-text> actor between start-pos and end-pos,
but not including end-pos.

The positions are specified in characters, not in bytes.

Chapter 67: ClutterText 240

self a <clutter-text>

start-pos start of text, in characters

end-pos end of text, in characters

ret a newly allocated string with the contents of the text actor between the
specified positions. Use g-free to free the resources when done

Since 1.0

[Function]clutter-text-set-cursor-color (self <clutter-text>)
(color <clutter-color>)

[Method]set-cursor-color
Sets the color of the cursor of a <clutter-text> actor.

If color is ‘#f’, the cursor color will be the same as the text color.

self a <clutter-text>

color the color of the cursor, or ‘#f’ to unset it

Since 1.0

[Function]clutter-text-get-cursor-color (self <clutter-text>)
(color <clutter-color>)

[Method]get-cursor-color
Retrieves the color of the cursor of a <clutter-text> actor.

self a <clutter-text>

color return location for a <clutter-color>.

Since 1.0

[Function]clutter-text-set-selection-color (self <clutter-text>)
(color <clutter-color>)

[Method]set-selection-color
Sets the color of the selection of a <clutter-text> actor.

If color is ‘#f’, the selection color will be the same as the cursor color, or if no cursor
color is set either then it will be the same as the text color.

self a <clutter-text>

color the color of the selection, or ‘#f’ to unset it

Since 1.0

[Function]clutter-text-get-selection-color (self <clutter-text>)
(color <clutter-color>)

[Method]get-selection-color
Retrieves the color of the selection of a <clutter-text> actor.

self a <clutter-text>

color return location for a <clutter-color>.

Since 1.0

Chapter 67: ClutterText 241

[Function]clutter-text-set-cursor-position (self <clutter-text>)
(position int)

[Method]set-cursor-position
Sets the cursor of a <clutter-text> actor at position.

The position is expressed in characters, not in bytes.

self a <clutter-text>

position the new cursor position, in characters

Since 1.0

[Function]clutter-text-get-cursor-position (self <clutter-text>)
⇒ (ret int)

[Method]get-cursor-position
Retrieves the cursor position.

self a <clutter-text>

ret the cursor position, in characters

Since 1.0

[Function]clutter-text-set-cursor-visible (self <clutter-text>)
(cursor visible bool)

[Method]set-cursor-visible
Sets whether the cursor of a <clutter-text> actor should be visible or not.

The color of the cursor will be the same as the text color unless clutter-text-set-
cursor-color has been called.

The size of the cursor can be set using clutter-text-set-cursor-size.

The position of the cursor can be changed programmatically using clutter-text-

set-cursor-position.

self a <clutter-text>

cursor-visible
whether the cursor should be visible

Since 1.0

[Function]clutter-text-get-cursor-visible (self <clutter-text>)
⇒ (ret bool)

[Method]get-cursor-visible
Retrieves whether the cursor of a <clutter-text> actor is visible.

self a <clutter-text>

ret ‘#t’ if the cursor is visible

Since 1.0

[Function]clutter-text-set-cursor-size (self <clutter-text>) (size int)
[Method]set-cursor-size

Sets the size of the cursor of a <clutter-text>. The cursor will only be visible if the
<"cursor-visible"> property is set to ‘#t’.

Chapter 67: ClutterText 242

self a <clutter-text>

size the size of the cursor, in pixels, or -1 to use the default value

Since 1.0

[Function]clutter-text-get-cursor-size (self <clutter-text>)
⇒ (ret unsigned-int)

[Method]get-cursor-size
Retrieves the size of the cursor of a <clutter-text> actor.

self a <clutter-text>

ret the size of the cursor, in pixels

Since 1.0

[Function]clutter-text-activate (self <clutter-text>) ⇒ (ret bool)
[Method]activate

Emits the <"activate"> signal, if self has been set as activatable using clutter-

text-set-activatable.

This function can be used to emit the ::activate signal inside a <"captured-event">

or <"key-press-event"> signal handlers before the default signal handler for the
<clutter-text> is invoked.

self a <clutter-text>

ret ‘#t’ if the ::activate signal has been emitted, and ‘#f’ otherwise

Since 1.0

[Function]clutter-text-coords-to-position (self <clutter-text>)
(x float) (y float) ⇒ (ret int)

[Method]coords-to-position
Retrieves the position of the character at the given coordinates.

Return: the position of the character

self a <clutter-text>

x the X coordinate, relative to the actor

y the Y coordinate, relative to the actor

Since 1.10

[Function]clutter-text-position-to-coords (self <clutter-text>)
(position int) ⇒ (ret bool) (x float) (y float) (line height float)

[Method]position-to-coords
Retrieves the coordinates of the given position.

self a <clutter-text>

position position in characters

x return location for the X coordinate, or ‘#f’.

y return location for the Y coordinate, or ‘#f’.

Chapter 67: ClutterText 243

line-height return location for the line height, or ‘#f’.

ret ‘#t’ if the conversion was successful

Since 1.0

[Function]clutter-text-set-preedit-string (self <clutter-text>)
(preedit str mchars) (preedit attrs <pango-attr-list>)
(cursor pos unsigned-int)

[Method]set-preedit-string
Sets, or unsets, the pre-edit string. This function is useful for input methods to
display a string (with eventual specific Pango attributes) before it is entered inside
the <clutter-text> buffer.

The preedit string and attributes are ignored if the <clutter-text> actor is not
editable.

This function should not be used by applications

self a <clutter-text>

preedit-str
the pre-edit string, or ‘#f’ to unset it.

preedit-attrs
the pre-edit string attributes.

cursor-pos the cursor position for the pre-edit string

Since 1.2

[Function]clutter-text-get-layout-offsets (self <clutter-text>)
⇒ (x int) (y int)

[Method]get-layout-offsets
Obtains the coordinates where the <clutter-text> will draw the <pango-layout>

representing the text.

self a <clutter-text>

x location to store X offset of layout, or ‘#f’.

y location to store Y offset of layout, or ‘#f’.

Since 1.8

Chapter 68: ClutterTexture 244

68 ClutterTexture

An actor for displaying and manipulating images.

68.1 Overview

<clutter-texture> is a base class for displaying and manipulating pixel buffer type data.

The clutter-texture-set-from-rgb-data and clutter-texture-set-from-file

functions are used to copy image data into texture memory and subsequently realize the
texture.

Note: a ClutterTexture will scale its contents to fit the bounding box requested using
clutter-actor-set-size. To display an area of a texture without scaling, you should set
the clip area using clutter-actor-set-clip.

68.2 Usage

[Function]clutter-texture-new ⇒ (ret <clutter-actor>)
Creates a new empty <clutter-texture> object.

ret A newly created <clutter-texture> object.

[Function]clutter-texture-new-from-file (filename mchars)
⇒ (ret <clutter-actor>)

Creates a new ClutterTexture actor to display the image contained a file. If the image
failed to load then NULL is returned and error is set.

filename The name of an image file to load.

error Return locatoin for an error.

ret A newly created <clutter-texture> object or NULL on error.

Since 0.8

[Function]clutter-texture-set-from-file (self <clutter-texture>)
(filename mchars) ⇒ (ret bool)

[Method]set-from-file
Sets the <clutter-texture> image data from an image file. In case of failure, ‘#f’
is returned and error is set.

If <"load-async"> is set to ‘#t’, this function will return as soon as possible, and the
actual image loading from disk will be performed asynchronously. <"size-change">
will be emitten when the size of the texture is available and <"load-finished"> will
be emitted when the image has been loaded or if an error occurred.

texture A <clutter-texture>

filename The filename of the image in GLib file name encoding

error Return location for a <g-error>, or ‘#f’

ret ‘#t’ if the image was successfully loaded and set

Since 0.8

Chapter 68: ClutterTexture 245

[Function]clutter-texture-get-base-size (self <clutter-texture>)
⇒ (width int) (height int)

[Method]get-base-size
Gets the size in pixels of the untransformed underlying image

texture a <clutter-texture>

width return location for the width, or ‘#f’.

height return location for the height, or ‘#f’.

[Function]clutter-texture-get-max-tile-waste (self <clutter-texture>)
⇒ (ret int)

[Method]get-max-tile-waste
Gets the maximum waste that will be used when creating a texture or -1 if slicing is
disabled.

texture A <clutter-texture>

ret The maximum waste or -1 if the texture waste is unlimited.

Since 0.8

[Function]clutter-texture-set-filter-quality (self <clutter-texture>)
(filter quality <clutter-texture-quality>)

[Method]set-filter-quality
Sets the filter quality when scaling a texture. The quality is an enumeration currently
the following values are supported: ‘CLUTTER_TEXTURE_QUALITY_LOW’ which is fast
but only uses nearest neighbour interpolation. ‘CLUTTER_TEXTURE_QUALITY_MEDIUM’
which is computationally a bit more expensive (bilinear interpolation), and
‘CLUTTER_TEXTURE_QUALITY_HIGH’ which uses extra texture memory resources to
improve scaled down rendering as well (by using mipmaps). The default value is
‘CLUTTER_TEXTURE_QUALITY_MEDIUM’.

texture a <clutter-texture>

filter-quality
new filter quality value

Since 0.8

[Function]clutter-texture-get-sync-size (self <clutter-texture>)
⇒ (ret bool)

[Method]get-sync-size
Retrieves the value set with clutter-texture-set-sync-size

texture a <clutter-texture>

ret ‘#t’ if the <clutter-texture> should have the same preferred size of the
underlying image data

Since 1.0

Chapter 68: ClutterTexture 246

[Function]clutter-texture-set-sync-size (self <clutter-texture>)
(sync size bool)

[Method]set-sync-size
Sets whether texture should have the same preferred size as the underlying image
data.

texture a <clutter-texture>

sync-size ‘#t’ if the texture should have the same size of the underlying image data

Since 1.0

[Function]clutter-texture-get-repeat (self <clutter-texture>)
⇒ (repeat x bool) (repeat y bool)

[Method]get-repeat
Retrieves the horizontal and vertical repeat values set using clutter-texture-set-

repeat

texture a <clutter-texture>

repeat-x return location for the horizontal repeat.

repeat-y return location for the vertical repeat.

Since 1.0

[Function]clutter-texture-set-repeat (self <clutter-texture>)
(repeat x bool) (repeat y bool)

[Method]set-repeat
Sets whether the texture should repeat horizontally or vertically when the actor size
is bigger than the image size

texture a <clutter-texture>

repeat-x ‘#t’ if the texture should repeat horizontally

repeat-y ‘#t’ if the texture should repeat vertically

Since 1.0

[Function]clutter-texture-get-load-async (self <clutter-texture>)
⇒ (ret bool)

[Method]get-load-async
Retrieves the value set using clutter-texture-set-load-async

texture a <clutter-texture>

ret ‘#t’ if the <clutter-texture> should load the data from disk asyn-
chronously

Since 1.0

[Function]clutter-texture-set-load-async (self <clutter-texture>)
(load async bool)

[Method]set-load-async
Sets whether texture should use a worker thread to load the data from disk asyn-
chronously. Setting load-async to ‘#t’ will make clutter-texture-set-from-file

return immediately.

Chapter 68: ClutterTexture 247

See the <"load-async"> property documentation, and clutter-texture-set-load-

data-async.

texture a <clutter-texture>

load-async
‘#t’ if the texture should asynchronously load data from a filename

Since 1.0

[Function]clutter-texture-get-load-data-async (self <clutter-texture>)
⇒ (ret bool)

[Method]get-load-data-async
Retrieves the value set by clutter-texture-set-load-data-async

texture a <clutter-texture>

ret ‘#t’ if the <clutter-texture> should load the image data from a file
asynchronously

Since 1.0

[Function]clutter-texture-set-load-data-async (self <clutter-texture>)
(load async bool)

[Method]set-load-data-async
Sets whether texture should use a worker thread to load the data from disk asyn-
chronously. Setting load-async to ‘#t’ will make clutter-texture-set-from-file

block until the <clutter-texture> has determined the width and height of the image
data.

See the <"load-async"> property documentation, and clutter-texture-set-load-

async.

texture a <clutter-texture>

load-async
‘#t’ if the texture should asynchronously load data from a filename

Since 1.0

[Function]clutter-texture-get-pick-with-alpha (self <clutter-texture>)
⇒ (ret bool)

[Method]get-pick-with-alpha
Retrieves the value set by clutter-texture-set-load-data-async

texture a <clutter-texture>

ret ‘#t’ if the <clutter-texture> should define its shape using the alpha
channel when picking.

Since 1.4

[Function]clutter-texture-set-pick-with-alpha (self <clutter-texture>)
(pick with alpha bool)

[Method]set-pick-with-alpha
Sets whether texture should have it’s shape defined by the alpha channel when picking.

Chapter 68: ClutterTexture 248

Be aware that this is a bit more costly than the default picking due to the texture
lookup, extra test against the alpha value and the fact that it will also interrupt the
batching of geometry done internally.

Also there is currently no control over the threshold used to determine what value of
alpha is considered pickable, and so only fully opaque parts of the texture will react
to picking.

texture a <clutter-texture>

pick-with-alpha
‘#t’ if the alpha channel should affect the picking shape

Since 1.4

Chapter 69: ClutterTimeline 249

69 ClutterTimeline

A class for time-based events

69.1 Overview

<clutter-timeline> is a base class for managing time-based event that cause Clutter to
redraw a stage, such as animations.

Each <clutter-timeline> instance has a duration: once a timeline has been started,
using clutter-timeline-start, it will emit a signal that can be used to update the state
of the actors.

It is important to note that <clutter-timeline> is not a generic API for calling closures
after an interval; each Timeline is tied into the master clock used to drive the frame cycle.
If you need to schedule a closure after an interval, see clutter-threads-add-timeout

instead.

Users of <clutter-timeline> should connect to the <"new-frame"> signal, which is
emitted each time a timeline is advanced during the maste clock iteration. The <"new-

frame"> signal provides the time elapsed since the beginning of the timeline, in milliseconds.
A normalized progress value can be obtained by calling clutter-timeline-get-progress.
By using clutter-timeline-get-delta it is possible to obtain the wallclock time elapsed
since the last emission of the <"new-frame"> signal.

Initial state can be set up by using the <"started"> signal, while final state can be set
up by using the <"completed"> signal. The <clutter-timeline> guarantees the emission
of at least a single <"new-frame"> signal, as well as the emission of the <"completed">

signal.

It is possible to connect to specific points in the timeline progress by adding markers us-
ing clutter-timeline-add-marker-at-time and connecting to the <"marker-reached">
signal.

Timelines can be made to loop once they reach the end of their duration, by
using clutter-timeline-set-repeat-count; a looping timeline will still emit the
<"completed"> signal once it reaches the end of its duration.

Timelines have a <"direction">: the default direction is ‘CLUTTER_TIMELINE_FORWARD’,
and goes from 0 to the duration; it is possible to change the direction to
‘CLUTTER_TIMELINE_BACKWARD’, and have the timeline go from the duration to 0.
The direction can be automatically reversed when reaching completion by using the
<"auto-reverse"> property.

Timelines are used in the Clutter animation framework by classes like <clutter-

animation>, <clutter-animator>, and <clutter-state>.

69.2 Defining Timelines in ClutterScript

A <clutter-timeline> can be described in <clutter-script> like any other object. Ad-
ditionally, it is possible to define markers directly inside the JSON definition by using the
markers JSON object member, such as:

{

Chapter 69: ClutterTimeline 250

"type" : "ClutterTimeline",

"duration" : 1000,

"markers" : [

{ "name" : "quarter", "time" : 250 },

{ "name" : "half-time", "time" : 500 },

{ "name" : "three-quarters", "time" : 750 }

]

}

69.3 Usage

[Function]clutter-timeline-new (msecs unsigned-int)
⇒ (ret <clutter-timeline>)

Creates a new <clutter-timeline> with a duration of msecs.

msecs Duration of the timeline in milliseconds

ret the newly created <clutter-timeline> instance. Use g-object-unref

when done using it

Since 0.6

[Function]clutter-timeline-set-duration (self <clutter-timeline>)
(msecs unsigned-int)

[Method]set-duration
Sets the duration of the timeline, in milliseconds. The speed of the timeline depends
on the ClutterTimeline:fps setting.

timeline a <clutter-timeline>

msecs duration of the timeline in milliseconds

Since 0.6

[Function]clutter-timeline-get-duration (self <clutter-timeline>)
⇒ (ret unsigned-int)

[Method]get-duration
Retrieves the duration of a <clutter-timeline> in milliseconds. See clutter-

timeline-set-duration.

timeline a <clutter-timeline>

ret the duration of the timeline, in milliseconds.

Since 0.6

[Function]clutter-timeline-set-repeat-count (self <clutter-timeline>)
(count int)

[Method]set-repeat-count
Sets the number of times the timeline should repeat.

If count is 0, the timeline never repeats.

If count is -1, the timeline will always repeat until it’s stopped.

Chapter 69: ClutterTimeline 251

timeline a <clutter-timeline>

count the number of times the timeline should repeat

Since 1.10

[Function]clutter-timeline-get-repeat-count (self <clutter-timeline>)
⇒ (ret int)

[Method]get-repeat-count
Retrieves the number set using clutter-timeline-set-repeat-count.

timeline a <clutter-timeline>

ret the number of repeats

Since 1.10

[Function]clutter-timeline-set-delay (self <clutter-timeline>)
(msecs unsigned-int)

[Method]set-delay
Sets the delay, in milliseconds, before timeline should start.

timeline a <clutter-timeline>

msecs delay in milliseconds

Since 0.4

[Function]clutter-timeline-get-delay (self <clutter-timeline>)
⇒ (ret unsigned-int)

[Method]get-delay
Retrieves the delay set using clutter-timeline-set-delay.

timeline a <clutter-timeline>

ret the delay in milliseconds.

Since 0.4

[Function]clutter-timeline-set-direction (self <clutter-timeline>)
(direction <clutter-timeline-direction>)

[Method]set-direction
Sets the direction of timeline, either ‘CLUTTER_TIMELINE_FORWARD’ or
‘CLUTTER_TIMELINE_BACKWARD’.

timeline a <clutter-timeline>

direction the direction of the timeline

Since 0.6

[Function]clutter-timeline-get-direction (self <clutter-timeline>)
⇒ (ret <clutter-timeline-direction>)

[Method]get-direction
Retrieves the direction of the timeline set with clutter-timeline-set-direction.

timeline a <clutter-timeline>

Chapter 69: ClutterTimeline 252

ret the direction of the timeline

Since 0.6

[Function]clutter-timeline-set-auto-reverse (self <clutter-timeline>)
(reverse bool)

[Method]set-auto-reverse
Sets whether timeline should reverse the direction after the emission of the
<"completed"> signal.

Setting the <"auto-reverse"> property to ‘#t’ is the equivalent of connecting a
callback to the <"completed"> signal and changing the direction of the timeline from
that callback; for instance, this code:

static void

reverse_timeline (ClutterTimeline *timeline)

{

ClutterTimelineDirection dir = clutter_timeline_get_direction (timeline);

if (dir == CLUTTER_TIMELINE_FORWARD)

dir = CLUTTER_TIMELINE_BACKWARD;

else

dir = CLUTTER_TIMELINE_FORWARD;

clutter_timeline_set_direction (timeline, dir);

}

...

timeline = clutter_timeline_new (1000);

clutter_timeline_set_repeat_count (timeline, -1);

g_signal_connect (timeline, "completed",

G_CALLBACK (reverse_timeline),

NULL);

can be effectively replaced by:

timeline = clutter_timeline_new (1000);

clutter_timeline_set_repeat_count (timeline, -1);

clutter_timeline_set_auto_reverse (timeline);

timeline a <clutter-timeline>

reverse ‘#t’ if the timeline should reverse the direction

Since 1.6

[Function]clutter-timeline-get-auto-reverse (self <clutter-timeline>)
⇒ (ret bool)

[Method]get-auto-reverse
Retrieves the value set by clutter-timeline-set-auto-reverse.

timeline a <clutter-timeline>

Chapter 69: ClutterTimeline 253

ret ‘#t’ if the timeline should automatically reverse, and ‘#f’ otherwise

Since 1.6

[Function]clutter-timeline-set-progress-mode (self <clutter-timeline>)
(mode <clutter-animation-mode>)

[Method]set-progress-mode
Sets the progress function using a value from the <clutter-animation-mode>

enumeration. The mode cannot be ‘CLUTTER_CUSTOM_MODE’ or bigger than
‘CLUTTER_ANIMATION_LAST’.

timeline a <clutter-timeline>

mode the progress mode, as a <clutter-animation-mode>

Since 1.10

[Function]clutter-timeline-get-progress-mode (self <clutter-timeline>)
⇒ (ret <clutter-animation-mode>)

[Method]get-progress-mode
Retrieves the progress mode set using clutter-timeline-set-progress-mode or
clutter-timeline-set-progress-func.

timeline a <clutter-timeline>

ret a <clutter-animation-mode>

Since 1.10

[Function]clutter-timeline-get-duration-hint (self <clutter-timeline>)
⇒ (ret int64)

[Method]get-duration-hint
Retrieves the full duration of the timeline, taking into account the current value of
the <"repeat-count"> property.

If the <"repeat-count"> property is set to -1, this function will return ‘G_MAXINT64’.

The returned value is to be considered a hint, and it’s only valid as long as the timeline
hasn’t been changed.

timeline a <clutter-timeline>

ret the full duration of the <clutter-timeline>

Since 1.10

[Function]clutter-timeline-get-current-repeat (self <clutter-timeline>)
⇒ (ret int)

[Method]get-current-repeat
Retrieves the current repeat for a timeline.

Repeats start at 0.

timeline a <clutter-timeline>

ret the current repeat

Since 1.10

Chapter 69: ClutterTimeline 254

[Function]clutter-timeline-start (self <clutter-timeline>)
[Method]start

Starts the <clutter-timeline> playing.

timeline A <clutter-timeline>

[Function]clutter-timeline-pause (self <clutter-timeline>)
[Method]pause

Pauses the <clutter-timeline> on current frame

timeline A <clutter-timeline>

[Function]clutter-timeline-stop (self <clutter-timeline>)
[Method]stop

Stops the <clutter-timeline> and moves to frame 0

timeline A <clutter-timeline>

[Function]clutter-timeline-rewind (self <clutter-timeline>)
[Method]rewind

Rewinds <clutter-timeline> to the first frame if its direction is
‘CLUTTER_TIMELINE_FORWARD’ and the last frame if it is ‘CLUTTER_TIMELINE_BACKWARD’.

timeline A <clutter-timeline>

[Function]clutter-timeline-skip (self <clutter-timeline>)
(msecs unsigned-int)

[Method]skip
Advance timeline by the requested time in milliseconds

timeline A <clutter-timeline>

msecs Amount of time to skip

[Function]clutter-timeline-advance (self <clutter-timeline>)
(msecs unsigned-int)

[Method]advance
Advance timeline to the requested point. The point is given as a time in milliseconds
since the timeline started.

The timeline will not emit the <"new-frame"> signal for the given time. The first
::new-frame signal after the call to clutter-timeline-advance will be emit the
skipped markers.

timeline A <clutter-timeline>

msecs Time to advance to

[Function]clutter-timeline-get-elapsed-time (self <clutter-timeline>)
⇒ (ret unsigned-int)

[Method]get-elapsed-time
Request the current time position of the timeline.

timeline A <clutter-timeline>

ret current elapsed time in milliseconds.

Chapter 69: ClutterTimeline 255

[Function]clutter-timeline-get-delta (self <clutter-timeline>)
⇒ (ret unsigned-int)

[Method]get-delta
Retrieves the amount of time elapsed since the last ClutterTimeline::new-frame signal.

This function is only useful inside handlers for the ::new-frame signal, and its be-
haviour is undefined if the timeline is not playing.

timeline a <clutter-timeline>

ret the amount of time in milliseconds elapsed since the last frame

Since 0.6

[Function]clutter-timeline-get-progress (self <clutter-timeline>)
⇒ (ret double)

[Method]get-progress
The position of the timeline in a normalized [-1, 2] interval.

The return value of this function is determined by the progress mode set using
clutter-timeline-set-progress-mode, or by the progress function set using
clutter-timeline-set-progress-func.

timeline a <clutter-timeline>

ret the normalized current position in the timeline.

Since 0.6

[Function]clutter-timeline-is-playing (self <clutter-timeline>)
⇒ (ret bool)

[Method]is-playing
Queries state of a <clutter-timeline>.

timeline A <clutter-timeline>

ret ‘#t’ if timeline is currently playing

[Function]clutter-timeline-add-marker-at-time (self <clutter-timeline>)
(marker name mchars) (msecs unsigned-int)

[Method]add-marker-at-time
Adds a named marker that will be hit when the timeline has been running for msecs
milliseconds. Markers are unique string identifiers for a given time. Once timeline
reaches msecs, it will emit a ::marker-reached signal for each marker attached to that
time.

A marker can be removed with clutter-timeline-remove-marker. The timeline
can be advanced to a marker using clutter-timeline-advance-to-marker.

timeline a <clutter-timeline>

marker-name
the unique name for this marker

msecs position of the marker in milliseconds

Since 0.8

Chapter 69: ClutterTimeline 256

[Function]clutter-timeline-has-marker (self <clutter-timeline>)
(marker name mchars) ⇒ (ret bool)

[Method]has-marker
Checks whether timeline has a marker set with the given name.

timeline a <clutter-timeline>

marker-name
the name of the marker

ret ‘#t’ if the marker was found

Since 0.8

[Function]clutter-timeline-remove-marker (self <clutter-timeline>)
(marker name mchars)

[Method]remove-marker
Removes marker-name, if found, from timeline.

timeline a <clutter-timeline>

marker-name
the name of the marker to remove

Since 0.8

[Function]clutter-timeline-advance-to-marker (self <clutter-timeline>)
(marker name mchars)

[Method]advance-to-marker
Advances timeline to the time of the given marker-name.

Like clutter-timeline-advance, this function will not emit the <"new-frame"> for
the time where marker-name is set, nor it will emit <"marker-reached"> for marker-
name.

timeline a <clutter-timeline>

marker-name
the name of the marker

Since 0.8

Chapter 70: ClutterTransition 257

70 ClutterTransition

Transition between two values

70.1 Overview

<clutter-transition> is a subclass of <clutter-timeline> that computes the interpo-
lation between two values, stored by a <clutter-interval>.

70.2 Usage

[Function]clutter-transition-set-interval (self <clutter-transition>)
(interval <clutter-interval>)

[Method]set-interval
Sets the <"interval"> property using interval.

The transition will acquire a reference on the interval, sinking the floating flag on it
if necessary.

transition a <clutter-transition>

interval a <clutter-interval>, or ‘#f’.

Since 1.10

[Function]clutter-transition-get-interval (self <clutter-transition>)
⇒ (ret <clutter-interval>)

[Method]get-interval
Retrieves the interval set using clutter-transition-set-interval

transition a <clutter-transition>

ret a <clutter-interval>, or ‘#f’; the returned interval is owned by the
<clutter-transition> and it should not be freed directly.

Since 1.10

[Function]clutter-transition-set-animatable (self <clutter-transition>)
(animatable <clutter-animatable>)

[Method]set-animatable
Sets the <"animatable"> property.

The transition will acquire a reference to the animatable instance, and will call the
clutter-transition-class.attached virtual function.

If an existing <clutter-animatable> is attached to transition, the reference will
be released, and the clutter-transition-class.detached virtual function will be
called.

transition a <clutter-transition>

animatable
a <clutter-animatable>, or ‘#f’.

Since 1.10

Chapter 70: ClutterTransition 258

[Function]clutter-transition-get-animatable (self <clutter-transition>)
⇒ (ret <clutter-animatable>)

[Method]get-animatable
Retrieves the <clutter-animatable> set using clutter-transition-set-

animatable.

transition a <clutter-transition>

ret a <clutter-animatable>, or ‘#f’; the returned animatable is owned by
the <clutter-transition>, and it should not be freed directly.

Since 1.10

Chapter 71: Unit conversion 259

71 Unit conversion

A logical distance unit

71.1 Overview

<clutter-units> is a structure holding a logical distance value along with its type,
expressed as a value of the <clutter-unit-type> enumeration. It is possible to
use <clutter-units> to store a position or a size in units different than pixels, and
convert them whenever needed (for instance inside the <clutter-actor>::allocate
virtual function, or inside the <clutter-actor>::get-preferred-width and
<clutter-actor>::get-preferred-height virtual functions.

In order to register a <clutter-units> property, the <clutter-param-spec-

units><gparam> sub-class should be used:

GParamSpec *pspec;

pspec = clutter_param_spec_units ("active-width",

"Width",

"Width of the active area, in millimeters",

CLUTTER_UNIT_MM,

0.0, 12.0,

12.0,

G_PARAM_READWRITE);

g_object_class_install_property (gobject_class, PROP_WIDTH, pspec);

A <gvalue> holding units can be manipulated using clutter-value-set-units

and clutter-value-get-units. <gvalue>s containing a <clutter-units> value can
also be transformed to <gvalue>s initialized with ‘G_TYPE_INT’, ‘G_TYPE_FLOAT’ and
‘G_TYPE_STRING’ through implicit conversion and using g-value-transform.

<clutter-units> is available since Clutter 1.0

71.2 Usage

[Function]clutter-units-from-cm (self <clutter-units>) (cm float)
Stores a value in centimeters inside units

units a <clutter-units>.

cm centimeters

Since 1.2

[Function]clutter-units-from-em (em float) ⇒ (ret <clutter-units>)
Stores a value in em inside units, using the default font name as returned by clutter-

backend-get-font-name

units a <clutter-units>.

em em

Since 1.0

Chapter 71: Unit conversion 260

[Function]clutter-units-from-em-for-font (font name mchars) (em float)
⇒ (ret <clutter-units>)

Stores a value in em inside units using font-name

units a <clutter-units>.

font-name the font name and size.

em em

Since 1.0

[Function]clutter-units-from-mm (mm float) ⇒ (ret <clutter-units>)
Stores a value in millimiters inside units

units a <clutter-units>.

mm millimeters

Since 1.0

[Function]clutter-units-from-pixels (px int) ⇒ (ret <clutter-units>)
Stores a value in pixels inside units

units a <clutter-units>.

px pixels

Since 1.0

[Function]clutter-units-from-pt (pt float) ⇒ (ret <clutter-units>)
Stores a value in typographic points inside units

units a <clutter-units>.

pt typographic points

Since 1.0

[Function]clutter-units-to-pixels (self <clutter-units>) ⇒ (ret float)
Converts a value in <clutter-units> to pixels

units units to convert

ret the value in pixels

Since 1.0

[Function]clutter-units-get-unit-type (self <clutter-units>)
⇒ (ret <clutter-unit-type>)

Retrieves the unit type of the value stored inside units

units a <clutter-units>

ret a unit type

Since 1.0

Chapter 71: Unit conversion 261

[Function]clutter-units-get-unit-value (self <clutter-units>)
⇒ (ret float)

Retrieves the value stored inside units

units a <clutter-units>

ret the value stored inside a <clutter-units>

Since 1.0

[Function]clutter-units-from-string (str mchars) ⇒ (ret <clutter-units>)
Parses a value and updates units with it

A <clutter-units> expressed in string should match:

units: wsp* unit-value wsp* unit-name? wsp*

unit-value: number

unit-name: ’px’ | ’pt’ | ’mm’ | ’em’ | ’cm’

number: digit+

| digit* sep digit+

sep: ’.’ | ’,’

digit: ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

wsp: (0x20 | 0x9 | 0xA | 0xB | 0xC | 0xD)+

For instance, these are valid strings:

10 px

5.1 em

24 pt

12.6 mm

.3 cm

While these are not:

42 cats

omg!1!ponies

If no unit is specified, pixels are assumed.

units a <clutter-units>.

str the string to convert

ret ‘#t’ if the string was successfully parsed, and ‘#f’ otherwise

Since 1.0

[Function]clutter-units-to-string (self <clutter-units>) ⇒ (ret mchars)
Converts units into a string

See clutter-units-from-string for the units syntax and for examples of output� �
Fractional values are truncated to the second decimal position for em, mm and cm,
and to the first decimal position for typographic points. Pixels are integers.
 	

Chapter 71: Unit conversion 262

units a <clutter-units>

ret a newly allocated string containing the encoded <clutter-units> value.
Use g-free to free the string

Since 1.0

Chapter 72: Utilities 263

72 Utilities

Utility functions

72.1 Overview

Various miscellaneous utilility functions.

72.2 Usage

Chapter 73: Versioning Macros 264

73 Versioning Macros

Versioning utility macros

73.1 Overview

Clutter offers a set of macros for checking the version of the library at compile time; it also
provides a function to perform the same check at run time.

Clutter adds version information to both API deprecations and additions; by definining
the macros ‘CLUTTER_VERSION_MIN_REQUIRED’ and ‘CLUTTER_VERSION_MAX_ALLOWED’, you
can specify the range of Clutter versions whose API you want to use. Functions that
were deprecated before, or introduced after, this range will trigger compiler warnings. For
instance, if we define the following symbols:

CLUTTER_VERSION_MIN_REQUIRED = CLUTTER_VERSION_1_6

CLUTTER_VERSION_MAX_ALLOWED = CLUTTER_VERSION_1_8

and we have the following functions annotated in the Clutter headers:

void clutter_function_A (void) CLUTTER_DEPRECATED_IN_1_4;

void clutter_function_B (void) CLUTTER_DEPRECATED_IN_1_6;

void clutter_function_C (void) CLUTTER_AVAILABLE_IN_1_8;

void clutter_function_D (void) CLUTTER_AVAILABLE_IN_1_10;

then any application code using the functions above will get the output:

clutter_function_A: deprecation warning

clutter_function_B: no warning

clutter_function_C: no warning

clutter_function_D: symbol not available warning

It is possible to disable the compiler warnings by defining the macro
‘CLUTTER_DISABLE_DEPRECATION_WARNINGS’ before including the clutter.h header.

73.2 Usage

[Function]clutter-check-version (major unsigned-int)
(minor unsigned-int) (micro unsigned-int) ⇒ (ret bool)

Run-time version check, to check the version the Clutter library that an application
is currently linked against

This is the run-time equivalent of the compile-time ‘CLUTTER_CHECK_VERSION’ pre-
processor macro

major major version, like 1 in 1.2.3

minor minor version, like 2 in 1.2.3

micro micro version, like 3 in 1.2.3

ret ‘#t’ if the version of the Clutter library is greater than (major, minor,
micro), and ‘#f’ otherwise

Since 1.2

Chapter 74: Undocumented 265

74 Undocumented

The following symbols, if any, have not been properly documented.

74.1 (gnome clutter)

[Function]clutter-interval-get-final interval

[Function]clutter-interval-get-initial interval

[Function]clutter-interval-get-interval interval

[Function]clutter-interval-new type from to

[Function]clutter-interval-set-final interval val

[Function]clutter-interval-set-initial interval val

[Function]clutter-interval-set-interval interval initial final

74.2 (gnome gw clutter)

[Class]<clutter-animatable>

[Variable]<clutter-event-sequence*>

[Variable]<clutter-input-device*>

[Variable]clutter-actor-add-constraint-with-name

[Variable]clutter-actor-allocate-available-size

[Variable]clutter-actor-allocate-preferred-size

[Variable]clutter-actor-apply-relative-transform-to-point

[Variable]clutter-actor-apply-transform-to-point

[Variable]clutter-actor-get-allocation-geometry

[Variable]clutter-actor-get-anchor-point-gravity

[Variable]clutter-actor-get-clip-to-allocation

[Function]clutter-actor-get-content-scaling-filters

[Variable]clutter-actor-get-default-paint-volume

[Variable]clutter-actor-get-fixed-position-set

[Variable]clutter-actor-get-offscreen-redirect

[Variable]clutter-actor-get-paint-volume

[Variable]clutter-actor-get-transformed-paint-volume

[Function]clutter-actor-get-transformed-position

[Variable]clutter-actor-get-z-rotation-gravity

[Variable]clutter-actor-move-anchor-point-from-gravity

Chapter 74: Undocumented 266

[Variable]clutter-actor-remove-all-transitions

[Variable]clutter-actor-remove-constraint-by-name

[Variable]clutter-actor-set-anchor-point-from-gravity

[Variable]clutter-actor-set-child-above-sibling

[Variable]clutter-actor-set-child-below-sibling

[Variable]clutter-actor-set-clip-to-allocation

[Variable]clutter-actor-set-content-scaling-filters

[Variable]clutter-actor-set-fixed-position-set

[Variable]clutter-actor-set-offscreen-redirect

[Variable]clutter-actor-set-scale-with-gravity

[Variable]clutter-actor-set-z-rotation-from-gravity

[Variable]clutter-align-constraint-get-align-axis

[Variable]clutter-align-constraint-set-align-axis

[Variable]clutter-animatable-get-initial-state

[Variable]clutter-animatable-interpolate-value

[Variable]clutter-animator-key-get-property-name

[Function]clutter-animator-key-get-property-type

[Variable]clutter-animator-property-get-ease-in

[Variable]clutter-animator-property-get-interpolation

[Variable]clutter-animator-property-set-ease-in

[Variable]clutter-animator-property-set-interpolation

[Function]clutter-backend-get-font-options

[Variable]clutter-base-init

[Variable]clutter-bind-constraint-get-coordinate

[Variable]clutter-bind-constraint-set-coordinate

[Variable]clutter-binding-pool-install-closure

[Variable]clutter-binding-pool-override-closure

[Variable]clutter-box-layout-get-easing-duration

[Variable]clutter-box-layout-get-use-animations

[Variable]clutter-box-layout-set-easing-duration

[Variable]clutter-box-layout-set-use-animations

[Function]clutter-brightness-contrast-effect-get-brightness

[Function]clutter-brightness-contrast-effect-get-contrast

Chapter 74: Undocumented 267

[Variable]clutter-brightness-contrast-effect-new

[Variable]clutter-brightness-contrast-effect-set-brightness

[Variable]clutter-brightness-contrast-effect-set-brightness-full

[Variable]clutter-brightness-contrast-effect-set-contrast

[Variable]clutter-brightness-contrast-effect-set-contrast-full

[Variable]clutter-cairo-texture-get-auto-resize

[Function]clutter-cairo-texture-get-surface-size

[Variable]clutter-cairo-texture-set-auto-resize

[Variable]clutter-cairo-texture-set-surface-size

[Variable]clutter-container-child-get-property

[Variable]clutter-container-child-set-property

[Variable]clutter-container-destroy-child-meta

[Variable]clutter-container-find-child-by-name

[Variable]clutter-desaturate-effect-get-factor

[Variable]clutter-desaturate-effect-set-factor

[Variable]clutter-device-manager-get-core-device

[Variable]clutter-device-manager-get-default

[Function]clutter-drag-action-get-drag-threshold

[Function]clutter-drag-action-get-motion-coords

[Function]clutter-drag-action-get-press-coords

[Variable]clutter-drag-action-set-drag-threshold

[Variable]clutter-event-get-scroll-direction

[Variable]clutter-flow-layout-get-column-spacing

[Function]clutter-flow-layout-get-column-width

[Variable]clutter-flow-layout-get-orientation

[Variable]clutter-flow-layout-set-column-spacing

[Variable]clutter-flow-layout-set-column-width

[Function]clutter-gesture-action-get-motion-coords

[Function]clutter-gesture-action-get-press-coords

[Function]clutter-gesture-action-get-release-coords

[Variable]clutter-image-error-quark

[Variable]clutter-input-device-get-associated-device

[Function]clutter-input-device-get-device-coords

Chapter 74: Undocumented 268

[Variable]clutter-input-device-get-device-mode

[Variable]clutter-input-device-get-device-name

[Variable]clutter-input-device-get-device-type

[Variable]clutter-input-device-get-grabbed-actor

[Variable]clutter-input-device-get-pointer-actor

[Variable]clutter-input-device-get-pointer-stage

[Function]clutter-input-device-get-slave-devices

[Function]clutter-input-device-keycode-to-evdev

[Variable]clutter-input-device-update-from-event

[Variable]clutter-knot-equal

[Variable]clutter-layout-manager-begin-animation

[Variable]clutter-layout-manager-child-get-property

[Variable]clutter-layout-manager-child-set-property

[Variable]clutter-layout-manager-end-animation

[Variable]clutter-layout-manager-find-child-property

[Variable]clutter-layout-manager-get-animation-progress

[Variable]clutter-layout-manager-get-child-meta

[Function]clutter-layout-manager-get-preferred-height

[Function]clutter-layout-manager-get-preferred-width

[Variable]clutter-layout-manager-layout-changed

[Variable]clutter-layout-manager-set-container

[Variable]clutter-media-get-subtitle-font-name

[Variable]clutter-media-set-subtitle-font-name

[Function]clutter-offscreen-effect-get-target-size

[Variable]clutter-offscreen-effect-paint-target

[Variable]clutter-paint-node-add-texture-rectangle

[Variable]clutter-paint-volume-set-from-allocation

[Variable]clutter-property-transition-get-property-name

[Variable]clutter-property-transition-set-property-name

[Variable]clutter-script-error-quark

[Variable]clutter-script-get-translation-domain

[Variable]clutter-script-set-translation-domain

[Variable]clutter-shader-effect-set-shader-source

Chapter 74: Undocumented 269

[Variable]clutter-shader-effect-set-uniform-value

[Variable]clutter-shader-error-quark

[Variable]clutter-stage-get-motion-events-enabled

[Variable]clutter-stage-get-throttle-motion-events

[Variable]clutter-stage-manager-get-default-stage

[Variable]clutter-stage-set-motion-events-enabled

[Variable]clutter-stage-set-throttle-motion-events

[Variable]clutter-state-key-get-source-state-name

[Variable]clutter-state-key-get-target-state-name

[Variable]clutter-table-layout-get-column-count

[Variable]clutter-table-layout-get-column-spacing

[Variable]clutter-table-layout-get-easing-duration

[Variable]clutter-table-layout-get-easing-mode

[Variable]clutter-table-layout-get-row-spacing

[Variable]clutter-table-layout-get-use-animations

[Variable]clutter-table-layout-set-column-spacing

[Variable]clutter-table-layout-set-easing-duration

[Variable]clutter-table-layout-set-easing-mode

[Variable]clutter-table-layout-set-row-spacing

[Variable]clutter-table-layout-set-use-animations

[Variable]clutter-text-buffer-emit-deleted-text

[Variable]clutter-text-buffer-emit-inserted-text

[Variable]clutter-text-get-font-description

[Variable]clutter-text-get-selected-text-color

[Variable]clutter-text-set-selected-text-color

[Variable]clutter-texture-error-quark

[Variable]clutter-texture-get-filter-quality

[Variable]clutter-texture-get-keep-aspect-ratio

[Variable]clutter-texture-set-keep-aspect-ratio

[Variable]clutter-transition-get-remove-on-complete

[Variable]clutter-transition-set-remove-on-complete

Type Index 270

Type Index

<clutter-animatable> . 265

Function Index 271

Function Index

A
activate . 93, 242
add . 86
add-action . 49
add-action-with-name . 50
add-cairo-path . 184
add-child . 39, 177
add-close . 183
add-constraint . 51
add-curve-to . 183
add-effect . 52
add-effect-with-name . 53
add-line-to . 182
add-marker-at-time . 255
add-move-to . 182
add-node . 184
add-rectangle . 177
add-rel-curve-to . 183
add-rel-line-to . 182
add-rel-move-to . 182
add-states . 194
add-string . 184
add-transition . 46
advance . 254
advance-to-marker . 256
allocate . 18, 160
allocate-align-fill . 18

B
bind . 73
bind-interval . 73
block-action . 92

C
child-notify . 117
clear . 102, 187
clear-actions . 51
clear-constraints . 52
clear-effects . 54
clone . 152
clutter-actor-add-action 49
clutter-actor-add-action-with-name 50
clutter-actor-add-child . 39
clutter-actor-add-constraint 51
clutter-actor-add-effect 52
clutter-actor-add-effect-with-name 53
clutter-actor-add-transition 46
clutter-actor-allocate . 18
clutter-actor-allocate-align-fill 18
clutter-actor-box-clamp-to-pixel 57
clutter-actor-box-contains 57
clutter-actor-box-equal . 55

clutter-actor-box-get-area 57
clutter-actor-box-get-height 56
clutter-actor-box-get-origin 56
clutter-actor-box-get-size 57
clutter-actor-box-get-width 56
clutter-actor-box-get-x . 55
clutter-actor-box-get-y . 55
clutter-actor-box-init . 55
clutter-actor-box-init-rect 55
clutter-actor-box-interpolate 57
clutter-actor-box-new . 54
clutter-actor-box-set-origin 56
clutter-actor-box-set-size 56
clutter-actor-box-union . 58
clutter-actor-clear-actions 51
clutter-actor-clear-constraints 52
clutter-actor-clear-effects 54
clutter-actor-contains . 43
clutter-actor-continue-paint 16
clutter-actor-create-pango-context 48
clutter-actor-create-pango-layout 48
clutter-actor-destroy . 16
clutter-actor-destroy-all-children 41
clutter-actor-detach-animation 75
clutter-actor-event . 17
clutter-actor-get-accessible 49
clutter-actor-get-action 51
clutter-actor-get-actions 50
clutter-actor-get-allocation-box 20
clutter-actor-get-anchor-point 34
clutter-actor-get-animation 75
clutter-actor-get-background-color 27
clutter-actor-get-child-at-index 42
clutter-actor-get-children 43
clutter-actor-get-clip . 38
clutter-actor-get-constraint 52
clutter-actor-get-constraints 52
clutter-actor-get-content 36
clutter-actor-get-content-box 37
clutter-actor-get-content-gravity 37
clutter-actor-get-content-scaling-filters

. 265
clutter-actor-get-depth . 31
clutter-actor-get-easing-delay 45
clutter-actor-get-easing-duration 44
clutter-actor-get-easing-mode 45
clutter-actor-get-effect 54
clutter-actor-get-effects 54
clutter-actor-get-first-child 41
clutter-actor-get-flags . 14
clutter-actor-get-height 29
clutter-actor-get-last-child 42
clutter-actor-get-layout-manager 26
clutter-actor-get-margin 24
clutter-actor-get-margin-bottom 25

Function Index 272

clutter-actor-get-margin-left 26
clutter-actor-get-margin-right 25
clutter-actor-get-margin-top 24
clutter-actor-get-n-children 43
clutter-actor-get-name . 14
clutter-actor-get-next-sibling 42
clutter-actor-get-opacity 38
clutter-actor-get-paint-box 36
clutter-actor-get-paint-opacity 35
clutter-actor-get-paint-visibility 36
clutter-actor-get-pango-context 47
clutter-actor-get-parent 43
clutter-actor-get-position 28
clutter-actor-get-preferred-height 22
clutter-actor-get-preferred-size 21
clutter-actor-get-preferred-width 21
clutter-actor-get-previous-sibling 42
clutter-actor-get-reactive 47
clutter-actor-get-request-mode 22
clutter-actor-get-rotation 33
clutter-actor-get-scale . 32
clutter-actor-get-scale-center 32
clutter-actor-get-scale-gravity 32
clutter-actor-get-size . 27
clutter-actor-get-stage . 44
clutter-actor-get-text-direction 49
clutter-actor-get-transformed-position . . 265
clutter-actor-get-transformed-size 35
clutter-actor-get-transition 45
clutter-actor-get-width . 28
clutter-actor-get-x . 29
clutter-actor-get-x-align 23
clutter-actor-get-y . 30
clutter-actor-get-y-align 24
clutter-actor-grab-key-focus 47
clutter-actor-has-actions 50
clutter-actor-has-allocation 23
clutter-actor-has-clip . 38
clutter-actor-has-constraints 52
clutter-actor-has-effects 53
clutter-actor-has-key-focus 47
clutter-actor-has-overlaps 18
clutter-actor-has-pointer 47
clutter-actor-hide . 15
clutter-actor-insert-child-above 39
clutter-actor-insert-child-at-index 40
clutter-actor-insert-child-below 40
clutter-actor-is-in-clone-paint 39
clutter-actor-is-rotated 33
clutter-actor-is-scaled . 32
clutter-actor-map . 17
clutter-actor-meta-get-actor 4
clutter-actor-meta-get-enabled 4
clutter-actor-meta-get-name 3
clutter-actor-meta-set-enabled 3
clutter-actor-meta-set-name 3
clutter-actor-move-anchor-point 34
clutter-actor-move-by . 30

clutter-actor-new . 13
clutter-actor-paint . 15
clutter-actor-queue-redraw 16
clutter-actor-queue-relayout 16
clutter-actor-realize . 15
clutter-actor-remove-action 50
clutter-actor-remove-action-by-name 50
clutter-actor-remove-all-children 41
clutter-actor-remove-child 40
clutter-actor-remove-clip 38
clutter-actor-remove-constraint 51
clutter-actor-remove-effect 53
clutter-actor-remove-effect-by-name 53
clutter-actor-remove-transition 46
clutter-actor-replace-child 40
clutter-actor-restore-easing-state 44
clutter-actor-save-easing-state 44
clutter-actor-set-allocation 19
clutter-actor-set-anchor-point 34
clutter-actor-set-background-color 26
clutter-actor-set-child-at-index 43
clutter-actor-set-clip . 37
clutter-actor-set-content 36
clutter-actor-set-content-gravity 37
clutter-actor-set-depth . 31
clutter-actor-set-easing-delay 45
clutter-actor-set-easing-duration 44
clutter-actor-set-easing-mode 45
clutter-actor-set-flags . 13
clutter-actor-set-height 29
clutter-actor-set-layout-manager 26
clutter-actor-set-margin 24
clutter-actor-set-margin-bottom 25
clutter-actor-set-margin-left 25
clutter-actor-set-margin-right 25
clutter-actor-set-margin-top 24
clutter-actor-set-name . 14
clutter-actor-set-opacity 38
clutter-actor-set-position 27
clutter-actor-set-reactive 47
clutter-actor-set-request-mode 22
clutter-actor-set-rotation 32
clutter-actor-set-scale . 31
clutter-actor-set-scale-full 31
clutter-actor-set-size . 27
clutter-actor-set-text-direction 48
clutter-actor-set-width . 28
clutter-actor-set-x . 29
clutter-actor-set-x-align 23
clutter-actor-set-y . 30
clutter-actor-set-y-align 23
clutter-actor-should-pick-paint 17
clutter-actor-show . 14
clutter-actor-transform-stage-point 34
clutter-actor-unmap . 17
clutter-actor-unrealize . 15
clutter-actor-unset-flags 14
clutter-align-constraint-get-factor 64

Function Index 273

clutter-align-constraint-get-source 63
clutter-align-constraint-new 63
clutter-align-constraint-set-factor 64
clutter-align-constraint-set-source 63
clutter-alpha-get-alpha . 67
clutter-alpha-get-mode . 67
clutter-alpha-get-timeline 66
clutter-alpha-new . 66
clutter-alpha-register-closure 67
clutter-alpha-set-closure 67
clutter-alpha-set-mode . 66
clutter-alpha-set-timeline 66
clutter-animatable-find-property 68
clutter-animatable-set-final-state 68
clutter-animation-bind . 73
clutter-animation-bind-interval 73
clutter-animation-completed 73
clutter-animation-get-duration 72
clutter-animation-get-interval 75
clutter-animation-get-loop 72
clutter-animation-get-mode 71
clutter-animation-get-object 71
clutter-animation-get-timeline 72
clutter-animation-has-property 74
clutter-animation-new . 70
clutter-animation-set-duration 71
clutter-animation-set-loop 72
clutter-animation-set-mode 71
clutter-animation-set-object 70
clutter-animation-set-timeline 72
clutter-animation-unbind-property 74
clutter-animation-update 74
clutter-animation-update-interval 74
clutter-animator-compute-value 79
clutter-animator-get-duration 80
clutter-animator-get-keys 78
clutter-animator-get-timeline 79
clutter-animator-key-get-mode 80
clutter-animator-key-get-object 80
clutter-animator-key-get-progress 80
clutter-animator-key-get-property-type . . 266
clutter-animator-key-get-value 81
clutter-animator-new . 77
clutter-animator-remove-key 78
clutter-animator-set-duration 80
clutter-animator-set-key 77
clutter-animator-set-timeline 79
clutter-animator-start . 78
clutter-backend-get-font-options 266
clutter-backend-get-resolution 82
clutter-backend-set-font-options 82
clutter-bin-layout-add . 86
clutter-bin-layout-get-alignment 85
clutter-bin-layout-new . 85
clutter-bin-layout-set-alignment 85
clutter-bind-constraint-get-offset 89
clutter-bind-constraint-get-source 88
clutter-bind-constraint-new 88

clutter-bind-constraint-set-offset 88
clutter-bind-constraint-set-source 88
clutter-binding-pool-activate 93
clutter-binding-pool-block-action 92
clutter-binding-pool-find 91
clutter-binding-pool-find-action 92
clutter-binding-pool-get-for-class 91
clutter-binding-pool-new 91
clutter-binding-pool-remove-action 92
clutter-binding-pool-unblock-action 92
clutter-blur-effect-new . 94
clutter-box-layout-get-alignment 98
clutter-box-layout-get-easing-mode 99
clutter-box-layout-get-expand 98
clutter-box-layout-get-fill 99
clutter-box-layout-get-homogeneous 97
clutter-box-layout-get-pack-start 96
clutter-box-layout-get-spacing 96
clutter-box-layout-get-vertical 97
clutter-box-layout-new . 95
clutter-box-layout-pack . 97
clutter-box-layout-set-alignment 98
clutter-box-layout-set-easing-mode 99
clutter-box-layout-set-expand 98
clutter-box-layout-set-fill 99
clutter-box-layout-set-homogeneous 97
clutter-box-layout-set-pack-start 96
clutter-box-layout-set-spacing 96
clutter-box-layout-set-vertical 96
clutter-brightness-contrast-effect-get-

brightness . 266
clutter-brightness-contrast-effect-get-

contrast . 266
clutter-cairo-set-source-color 102
clutter-cairo-texture-clear 102
clutter-cairo-texture-get-surface-size . . 267
clutter-cairo-texture-invalidate 101
clutter-cairo-texture-new 101
clutter-canvas-new . 103
clutter-canvas-set-size 103
clutter-check-version . 264
clutter-check-windowing-backend 83
clutter-child-meta-get-actor 104
clutter-child-meta-get-container 104
clutter-click-action-get-button 106
clutter-click-action-get-coords 106
clutter-click-action-get-state 106
clutter-click-action-new 106
clutter-click-action-release 107
clutter-clip-node-new . 178
clutter-clone-get-source 108
clutter-clone-new . 108
clutter-clone-set-source 108
clutter-color-add . 111
clutter-color-darken . 112
clutter-color-from-hls . 110
clutter-color-from-pixel 111
clutter-color-from-string 109

Function Index 274

clutter-color-get-static 109
clutter-color-interpolate 112
clutter-color-lighten . 112
clutter-color-new . 109
clutter-color-node-new . 178
clutter-color-shade . 112
clutter-color-subtract . 111
clutter-color-to-hls . 111
clutter-color-to-pixel . 111
clutter-color-to-string 110
clutter-colorize-effect-get-tint 114
clutter-colorize-effect-new 114
clutter-colorize-effect-set-tint 114
clutter-container-child-notify 117
clutter-container-create-child-meta 117
clutter-container-get-child-meta 117
clutter-content-get-preferred-size 119
clutter-content-invalidate 119
clutter-deform-effect-get-n-tiles 120
clutter-deform-effect-invalidate 121
clutter-deform-effect-set-n-tiles 120
clutter-desaturate-effect-new 122
clutter-device-manager-get-device 123
clutter-device-manager-list-devices 123
clutter-device-manager-peek-devices 123
clutter-do-event . 166
clutter-drag-action-get-drag-axis 126
clutter-drag-action-get-drag-handle 126
clutter-drag-action-get-drag-threshold . . 267
clutter-drag-action-get-motion-coords . . . 267
clutter-drag-action-get-press-coords 267
clutter-drag-action-new 125
clutter-drag-action-set-drag-axis 126
clutter-drag-action-set-drag-handle 125
clutter-drop-action-new 127
clutter-effect-queue-repaint 131
clutter-event-get . 135
clutter-event-get-button 136
clutter-event-get-click-count 136
clutter-event-get-coords 132
clutter-event-get-device 139
clutter-event-get-device-id 139
clutter-event-get-device-type 140
clutter-event-get-event-sequence 135
clutter-event-get-flags 134
clutter-event-get-key-code 137
clutter-event-get-key-symbol 136
clutter-event-get-key-unicode 137
clutter-event-get-related 138
clutter-event-get-scroll-delta 138
clutter-event-get-source 134
clutter-event-get-source-device 139
clutter-event-get-stage 134
clutter-event-get-state 133
clutter-event-get-time . 133
clutter-event-new . 132
clutter-event-peek . 135
clutter-event-put . 135

clutter-event-set-button 135
clutter-event-set-coords 132
clutter-event-set-device 139
clutter-event-set-flags 134
clutter-event-set-key-code 136
clutter-event-set-key-symbol 136
clutter-event-set-key-unicode 137
clutter-event-set-related 138
clutter-event-set-scroll-delta 138
clutter-event-set-scroll-direction 138
clutter-event-set-source 133
clutter-event-set-source-device 139
clutter-event-set-stage 134
clutter-event-set-state 133
clutter-event-set-time . 133
clutter-event-type . 132
clutter-events-pending . 135
clutter-feature-available 141
clutter-feature-get-all 141
clutter-fixed-layout-new 142
clutter-flow-layout-get-column-width 267
clutter-flow-layout-get-homogeneous 144
clutter-flow-layout-get-row-height 145
clutter-flow-layout-get-row-spacing 144
clutter-flow-layout-new 143
clutter-flow-layout-set-homogeneous 143
clutter-flow-layout-set-orientation 144
clutter-flow-layout-set-row-height 145
clutter-flow-layout-set-row-spacing 144
clutter-geometry-intersects 59
clutter-geometry-union . 58
clutter-gesture-action-get-motion-coords

. 267
clutter-gesture-action-get-press-coords

. 267
clutter-gesture-action-get-release-coords

. 267
clutter-gesture-action-new 146
clutter-get-accessibility-enabled 164
clutter-get-current-event 140
clutter-get-current-event-time 140
clutter-get-default-backend 82
clutter-get-default-frame-rate 164
clutter-get-default-text-direction 164
clutter-get-font-map . 164
clutter-get-keyboard-grab 165
clutter-get-pointer-grab 165
clutter-get-script-id . 195
clutter-grab-keyboard . 165
clutter-grab-pointer . 165
clutter-image-new . 147
clutter-input-device-get-axis 149
clutter-input-device-get-axis-value 150
clutter-input-device-get-device-coords . . 267
clutter-input-device-get-device-id 148
clutter-input-device-get-enabled 148
clutter-input-device-get-has-cursor 148
clutter-input-device-get-key 149

Function Index 275

clutter-input-device-get-n-axes 149
clutter-input-device-get-n-keys 149
clutter-input-device-get-slave-devices . . 268
clutter-input-device-grab 150
clutter-input-device-keycode-to-evdev . . . 268
clutter-input-device-set-enabled 148
clutter-input-device-set-key 149
clutter-input-device-ungrab 151
clutter-interval-clone . 152
clutter-interval-compute 154
clutter-interval-get-final 265
clutter-interval-get-final-value 153
clutter-interval-get-initial 265
clutter-interval-get-initial-value 153
clutter-interval-get-interval 265
clutter-interval-get-value-type 152
clutter-interval-new . 265
clutter-interval-new-with-values 152
clutter-interval-set-final 265
clutter-interval-set-final-value 153
clutter-interval-set-initial 265
clutter-interval-set-initial-value 153
clutter-interval-set-interval 265
clutter-interval-validate 154
clutter-keysym-to-unicode 137
clutter-layout-manager-allocate 160
clutter-layout-manager-get-preferred-height

. 268
clutter-layout-manager-get-preferred-width

. 268
clutter-layout-meta-get-manager 161
clutter-main . 164
clutter-main-level . 164
clutter-main-quit . 164
clutter-margin-new . 24
clutter-media-get-audio-volume 169
clutter-media-get-buffer-fill 169
clutter-media-get-can-seek 169
clutter-media-get-duration 169
clutter-media-get-playing 167
clutter-media-get-progress 168
clutter-media-get-subtitle-uri 168
clutter-media-get-uri . 167
clutter-media-set-audio-volume 168
clutter-media-set-filename 169
clutter-media-set-playing 167
clutter-media-set-progress 168
clutter-media-set-subtitle-uri 168
clutter-media-set-uri . 167
clutter-offscreen-effect-get-target-size

. 268
clutter-page-turn-effect-get-angle 176
clutter-page-turn-effect-get-period 175
clutter-page-turn-effect-get-radius 176
clutter-page-turn-effect-new 175
clutter-page-turn-effect-set-angle 175
clutter-page-turn-effect-set-period 175
clutter-page-turn-effect-set-radius 176

clutter-paint-node-add-child 177
clutter-paint-node-add-rectangle 177
clutter-paint-node-set-name 177
clutter-paint-volume-get-depth 61
clutter-paint-volume-get-height 60
clutter-paint-volume-get-origin 59
clutter-paint-volume-get-width 60
clutter-paint-volume-set-depth 61
clutter-paint-volume-set-height 60
clutter-paint-volume-set-origin 59
clutter-paint-volume-set-width 59
clutter-paint-volume-union 61
clutter-paint-volume-union-box 62
clutter-path-add-cairo-path 184
clutter-path-add-close . 183
clutter-path-add-curve-to 183
clutter-path-add-line-to 182
clutter-path-add-move-to 182
clutter-path-add-node . 184
clutter-path-add-rel-curve-to 183
clutter-path-add-rel-line-to 182
clutter-path-add-rel-move-to 182
clutter-path-add-string 184
clutter-path-clear . 187
clutter-path-constraint-get-offset 180
clutter-path-constraint-get-path 179
clutter-path-constraint-new 179
clutter-path-constraint-set-offset 180
clutter-path-constraint-set-path 179
clutter-path-get-description 186
clutter-path-get-length 187
clutter-path-get-n-nodes 185
clutter-path-get-node . 185
clutter-path-get-nodes . 185
clutter-path-get-position 187
clutter-path-insert-node 185
clutter-path-new . 181
clutter-path-new-with-description 181
clutter-path-node-equal 187
clutter-path-remove-node 185
clutter-path-replace-node 186
clutter-path-set-description 186
clutter-path-to-cairo-path 186
clutter-property-transition-new 188
clutter-script-add-states 194
clutter-script-ensure-objects 194
clutter-script-get-object 193
clutter-script-get-states 195
clutter-script-get-type-from-name 195
clutter-script-list-objects 194
clutter-script-load-from-data 192
clutter-script-load-from-file 193
clutter-script-load-from-resource 193
clutter-script-lookup-filename 193
clutter-script-new . 192
clutter-script-unmerge-objects 194
clutter-settings-get-default 197
clutter-shader-effect-new 199

Function Index 276

clutter-snap-constraint-get-edges 202
clutter-snap-constraint-get-offset 202
clutter-snap-constraint-get-source 201
clutter-snap-constraint-new 201
clutter-snap-constraint-set-edges 202
clutter-snap-constraint-set-offset 202
clutter-snap-constraint-set-source 201
clutter-stage-ensure-current 205
clutter-stage-ensure-redraw 206
clutter-stage-ensure-viewport 206
clutter-stage-event . 206
clutter-stage-get-accept-focus 208
clutter-stage-get-actor-at-pos 205
clutter-stage-get-fullscreen 205
clutter-stage-get-key-focus 206
clutter-stage-get-minimum-size 207
clutter-stage-get-no-clear-hint 208
clutter-stage-get-perspective 209
clutter-stage-get-title 209
clutter-stage-get-use-alpha 207
clutter-stage-get-user-resizable 210
clutter-stage-hide-cursor 205
clutter-stage-manager-get-default 203
clutter-stage-manager-list-stages 203
clutter-stage-manager-peek-stages 203
clutter-stage-new . 204
clutter-stage-set-accept-focus 208
clutter-stage-set-fullscreen 204
clutter-stage-set-key-focus 206
clutter-stage-set-minimum-size 207
clutter-stage-set-no-clear-hint 208
clutter-stage-set-perspective 209
clutter-stage-set-title 209
clutter-stage-set-use-alpha 207
clutter-stage-set-user-resizable 209
clutter-stage-show-cursor 205
clutter-state-get-animator 218
clutter-state-get-duration 216
clutter-state-get-keys . 216
clutter-state-get-state 214
clutter-state-get-states 216
clutter-state-get-timeline 217
clutter-state-key-get-mode 218
clutter-state-key-get-object 218
clutter-state-key-get-post-delay 219
clutter-state-key-get-pre-delay 219
clutter-state-key-get-property-name 218
clutter-state-key-get-property-type 219
clutter-state-key-get-value 219
clutter-state-new . 214
clutter-state-remove-key 217
clutter-state-set-animator 217
clutter-state-set-duration 215
clutter-state-set-key . 215
clutter-state-set-state 214
clutter-state-warp-to-state 214
clutter-swipe-action-new 220
clutter-table-layout-get-alignment 222

clutter-table-layout-get-expand 223
clutter-table-layout-get-fill 223
clutter-table-layout-get-row-count 222
clutter-table-layout-get-span 224
clutter-table-layout-new 221
clutter-table-layout-pack 222
clutter-table-layout-set-alignment 222
clutter-table-layout-set-expand 223
clutter-table-layout-set-fill 223
clutter-table-layout-set-span 224
clutter-text-activate . 242
clutter-text-buffer-delete-text 227
clutter-text-buffer-get-bytes 226
clutter-text-buffer-get-length 226
clutter-text-buffer-get-max-length 227
clutter-text-buffer-get-text 226
clutter-text-buffer-insert-text 227
clutter-text-buffer-new 225
clutter-text-buffer-new-with-text 225
clutter-text-buffer-set-max-length 226
clutter-text-buffer-set-text 225
clutter-text-coords-to-position 242
clutter-text-delete-chars 239
clutter-text-delete-selection 239
clutter-text-delete-text 239
clutter-text-get-activatable 230
clutter-text-get-attributes 231
clutter-text-get-buffer 229
clutter-text-get-chars . 239
clutter-text-get-color . 231
clutter-text-get-cursor-color 240
clutter-text-get-cursor-position 241
clutter-text-get-cursor-size 242
clutter-text-get-cursor-visible 241
clutter-text-get-editable 238
clutter-text-get-ellipsize 232
clutter-text-get-font-name 232
clutter-text-get-justify 233
clutter-text-get-layout 234
clutter-text-get-layout-offsets 243
clutter-text-get-line-alignment 234
clutter-text-get-line-wrap 234
clutter-text-get-line-wrap-mode 235
clutter-text-get-max-length 235
clutter-text-get-password-char 233
clutter-text-get-selectable 236
clutter-text-get-selection 236
clutter-text-get-selection-bound 237
clutter-text-get-selection-color 240
clutter-text-get-single-line-mode 237
clutter-text-get-text . 230
clutter-text-get-use-markup 238
clutter-text-insert-text 238
clutter-text-insert-unichar 239
clutter-text-new . 228
clutter-text-new-full . 228
clutter-text-new-with-buffer 229
clutter-text-new-with-text 228

Function Index 277

clutter-text-node-new . 178
clutter-text-position-to-coords 242
clutter-text-set-activatable 230
clutter-text-set-attributes 231
clutter-text-set-buffer 229
clutter-text-set-color . 231
clutter-text-set-cursor-color 240
clutter-text-set-cursor-position 241
clutter-text-set-cursor-size 241
clutter-text-set-cursor-visible 241
clutter-text-set-editable 238
clutter-text-set-ellipsize 232
clutter-text-set-font-description 233
clutter-text-set-font-name 232
clutter-text-set-justify 233
clutter-text-set-line-alignment 234
clutter-text-set-line-wrap 234
clutter-text-set-line-wrap-mode 235
clutter-text-set-markup 229
clutter-text-set-max-length 235
clutter-text-set-password-char 233
clutter-text-set-preedit-string 243
clutter-text-set-selectable 236
clutter-text-set-selection 236
clutter-text-set-selection-bound 236
clutter-text-set-selection-color 240
clutter-text-set-single-line-mode 237
clutter-text-set-text . 229
clutter-text-set-use-markup 237
clutter-texture-get-base-size 245
clutter-texture-get-load-async 246
clutter-texture-get-load-data-async 247
clutter-texture-get-max-tile-waste 245
clutter-texture-get-pick-with-alpha 247
clutter-texture-get-repeat 246
clutter-texture-get-sync-size 245
clutter-texture-new . 244
clutter-texture-new-from-file 244
clutter-texture-set-filter-quality 245
clutter-texture-set-from-file 244
clutter-texture-set-load-async 246
clutter-texture-set-load-data-async 247
clutter-texture-set-pick-with-alpha 247
clutter-texture-set-repeat 246
clutter-texture-set-sync-size 246
clutter-timeline-add-marker-at-time 255
clutter-timeline-advance 254
clutter-timeline-advance-to-marker 256
clutter-timeline-get-auto-reverse 252
clutter-timeline-get-current-repeat 253
clutter-timeline-get-delay 251
clutter-timeline-get-delta 255
clutter-timeline-get-direction 251
clutter-timeline-get-duration 250
clutter-timeline-get-duration-hint 253
clutter-timeline-get-elapsed-time 254
clutter-timeline-get-progress 255
clutter-timeline-get-progress-mode 253

clutter-timeline-get-repeat-count 251
clutter-timeline-has-marker 256
clutter-timeline-is-playing 255
clutter-timeline-new . 250
clutter-timeline-pause . 254
clutter-timeline-remove-marker 256
clutter-timeline-rewind 254
clutter-timeline-set-auto-reverse 252
clutter-timeline-set-delay 251
clutter-timeline-set-direction 251
clutter-timeline-set-duration 250
clutter-timeline-set-progress-mode 253
clutter-timeline-set-repeat-count 250
clutter-timeline-skip . 254
clutter-timeline-start . 254
clutter-timeline-stop . 254
clutter-transition-get-animatable 258
clutter-transition-get-interval 257
clutter-transition-set-animatable 257
clutter-transition-set-interval 257
clutter-ungrab-keyboard 165
clutter-ungrab-pointer . 165
clutter-unicode-to-keysym 137
clutter-units-from-cm . 259
clutter-units-from-em . 259
clutter-units-from-em-for-font 260
clutter-units-from-mm . 260
clutter-units-from-pixels 260
clutter-units-from-pt . 260
clutter-units-from-string 261
clutter-units-get-unit-type 260
clutter-units-get-unit-value 261
clutter-units-to-pixels 260
clutter-units-to-string 261
clutter-value-get-color 113
clutter-value-set-color 112
clutter-vertex-equal . 58
clutter-vertex-init . 58
clutter-vertex-new . 58
completed . 73
compute . 154
compute-value . 79
constraint-new . 179
contains . 43
continue-paint . 16
coords-to-position . 242
create-child-meta . 117
create-pango-context . 48
create-pango-layout . 48

D
delete-chars . 239
delete-selection . 239
delete-text . 227, 239
destroy . 16
destroy-all-children . 41
detach-animation . 75

Function Index 278

E
ensure-current . 205
ensure-objects . 194
ensure-redraw . 206
ensure-viewport . 206
event . 17, 206

F
find-action . 92
find-property . 68

G
get-accept-focus . 208
get-accessible . 49
get-action . 51
get-actions . 50
get-activatable . 230
get-actor . 4, 104
get-actor-at-pos . 205
get-alignment . 85, 98, 222
get-allocation-box . 20
get-alpha . 67
get-anchor-point . 34
get-angle . 176
get-animatable . 258
get-animation . 75
get-animator . 218
get-attributes . 231
get-audio-volume . 169
get-auto-reverse . 252
get-background-color . 27
get-base-size . 245
get-buffer . 229
get-buffer-fill . 169
get-button . 106, 136
get-bytes . 226
get-can-seek . 169
get-chars . 239
get-child-at-index . 42
get-child-meta . 117
get-children . 43
get-click-count . 136
get-clip . 38
get-color . 231
get-constraint . 52
get-constraints . 52
get-container . 104
get-content . 36
get-content-box . 37
get-content-gravity . 37
get-coords . 106, 132
get-current-repeat . 253
get-cursor-color . 240
get-cursor-position . 241
get-cursor-size . 242
get-cursor-visible . 241

get-delay . 251
get-delta . 255
get-depth . 31
get-description . 186
get-device . 123, 139
get-device-id . 139
get-device-type . 140
get-direction . 251
get-drag-axis . 126
get-drag-handle . 126
get-duration 72, 80, 169, 216, 250
get-duration-hint . 253
get-easing-delay . 45
get-easing-duration . 44
get-easing-mode . 45, 99
get-edges . 202
get-editable . 238
get-effect . 54
get-effects . 54
get-elapsed-time . 254
get-ellipsize . 232
get-enabled . 4
get-event-sequence . 135
get-expand . 98, 223
get-factor . 64
get-fill . 99, 223
get-final-value . 153
get-first-child . 41
get-flags . 14, 134
get-font-name . 232
get-fullscreen . 205
get-height . 29
get-homogeneous . 97, 144
get-initial-value . 153
get-interval . 75, 257
get-justify . 233
get-key-code . 137
get-key-focus . 206
get-key-symbol . 136
get-key-unicode . 137
get-keys . 78, 216
get-last-child . 42
get-layout . 234
get-layout-manager . 26
get-layout-offsets . 243
get-length . 187, 226
get-line-alignment . 234
get-line-wrap . 234
get-line-wrap-mode . 235
get-load-async . 246
get-load-data-async . 247
get-loop . 72
get-manager . 161
get-margin . 24
get-margin-bottom . 25
get-margin-left . 26
get-margin-right . 25
get-margin-top . 24

Function Index 279

get-max-length . 227, 235
get-max-tile-waste . 245
get-minimum-size . 207
get-mode . 67, 71
get-n-children . 43
get-n-nodes . 185
get-n-tiles . 120
get-name . 3, 14
get-next-sibling . 42
get-no-clear-hint . 208
get-node . 185
get-nodes . 185
get-object . 71, 193
get-offset . 89, 180, 202
get-opacity . 38
get-pack-start . 96
get-paint-box . 36
get-paint-opacity . 35
get-paint-visibility . 36
get-pango-context . 47
get-parent . 43
get-password-char . 233
get-path . 179
get-period . 175
get-perspective . 209
get-pick-with-alpha . 247
get-playing . 167
get-position . 28, 187
get-preferred-height . 22
get-preferred-size . 21, 119
get-preferred-width . 21
get-previous-sibling . 42
get-progress . 168, 255
get-progress-mode . 253
get-radius . 176
get-reactive . 47
get-related . 138
get-repeat . 246
get-repeat-count . 251
get-request-mode . 22
get-resolution . 82
get-rotation . 33
get-row-count . 222
get-row-height . 145
get-row-spacing . 144
get-scale . 32
get-scale-center . 32
get-scale-gravity . 32
get-scroll-delta . 138
get-selectable . 236
get-selection . 236
get-selection-bound . 237
get-selection-color . 240
get-single-line-mode . 237
get-size . 27
get-source 63, 88, 108, 134, 201
get-source-device . 139
get-spacing . 96

get-span . 224
get-stage . 44, 134
get-state . 106, 133, 214
get-states . 195, 216
get-subtitle-uri . 168
get-sync-size . 245
get-text . 226, 230
get-text-direction . 49
get-time . 133
get-timeline . 66, 72, 79, 217
get-tint . 114
get-title . 209
get-transformed-size . 35
get-transition . 45
get-type-from-name . 195
get-uri . 167
get-use-alpha . 207
get-use-markup . 238
get-user-resizable . 210
get-value-type . 152
get-vertical . 97
get-width . 28
get-x . 29
get-x-align . 23
get-y . 30
get-y-align . 24
grab-key-focus . 47

H
has-actions . 50
has-allocation . 23
has-clip . 38
has-constraints . 52
has-effects . 53
has-key-focus . 47
has-marker . 256
has-overlaps . 18
has-pointer . 47
has-property . 74
hide . 15
hide-cursor . 205

I
insert-child-above . 39
insert-child-at-index . 40
insert-child-below . 40
insert-node . 185
insert-text . 227, 238
insert-unichar . 239
invalidate . 101, 119, 121
is-in-clone-paint . 39
is-playing . 255
is-rotated . 33
is-scaled . 32

Function Index 280

L
list-devices . 123
list-objects . 194
list-stages . 203
load-from-data . 192
load-from-file . 193
load-from-resource . 193
lookup-filename . 193

M
map . 17
move-anchor-point . 34
move-by . 30

P
pack . 97, 222
paint . 15
pause . 254
peek-devices . 123
peek-stages . 203
position-to-coords . 242
put . 135

Q
queue-redraw . 16
queue-relayout . 16
queue-repaint . 131

R
realize . 15
release . 107
remove-action . 50, 92
remove-action-by-name . 50
remove-all-children . 41
remove-child . 40
remove-clip . 38
remove-constraint . 51
remove-effect . 53
remove-effect-by-name . 53
remove-key . 78, 217
remove-marker . 256
remove-node . 185
remove-transition . 46
replace-child . 40
replace-node . 186
restore-easing-state . 44
rewind . 254

S
save-easing-state . 44
set-accept-focus . 208
set-activatable . 230

set-alignment . 85, 98, 222
set-allocation . 19
set-anchor-point . 34
set-angle . 175
set-animatable . 257
set-animator . 217
set-attributes . 231
set-audio-volume . 168
set-auto-reverse . 252
set-background-color . 26
set-buffer . 229
set-button . 135
set-child-at-index . 43
set-clip . 37
set-closure . 67
set-color . 231
set-content . 36
set-content-gravity . 37
set-coords . 132
set-cursor-color . 240
set-cursor-position . 241
set-cursor-size . 241
set-cursor-visible . 241
set-delay . 251
set-depth . 31
set-description . 186
set-device . 139
set-direction . 251
set-drag-axis . 126
set-drag-handle . 125
set-duration . 71, 80, 215, 250
set-easing-delay . 45
set-easing-duration . 44
set-easing-mode . 45, 99
set-edges . 202
set-editable . 238
set-ellipsize . 232
set-enabled . 3
set-expand . 98, 223
set-factor . 64
set-filename . 169
set-fill . 99, 223
set-filter-quality . 245
set-final-state . 68
set-final-value . 153
set-flags . 13, 134
set-font-description . 233
set-font-name . 232
set-font-options . 82
set-from-file . 244
set-fullscreen . 204
set-height . 29
set-homogeneous . 97, 143
set-initial-value . 153
set-interval . 257
set-justify . 233
set-key . 77, 215
set-key-code . 136

Function Index 281

set-key-focus . 206
set-key-symbol . 136
set-key-unicode . 137
set-layout-manager . 26
set-line-alignment . 234
set-line-wrap . 234
set-line-wrap-mode . 235
set-load-async . 246
set-load-data-async . 247
set-loop . 72
set-margin . 24
set-margin-bottom . 25
set-margin-left . 25
set-margin-right . 25
set-margin-top . 24
set-markup . 229
set-max-length . 226, 235
set-minimum-size . 207
set-mode . 66, 71
set-n-tiles . 120
set-name . 3, 14, 177
set-no-clear-hint . 208
set-object . 70
set-offset . 88, 180, 202
set-opacity . 38
set-orientation . 144
set-pack-start . 96
set-password-char . 233
set-path . 179
set-period . 175
set-perspective . 209
set-pick-with-alpha . 247
set-playing . 167
set-position . 27
set-preedit-string . 243
set-progress . 168
set-progress-mode . 253
set-radius . 176
set-reactive . 47
set-related . 138
set-repeat . 246
set-repeat-count . 250
set-request-mode . 22
set-rotation . 32
set-row-height . 145
set-row-spacing . 144
set-scale . 31
set-scale-full . 31
set-scroll-delta . 138
set-scroll-direction . 138
set-selectable . 236
set-selection . 236
set-selection-bound . 236
set-selection-color . 240
set-single-line-mode . 237
set-size . 27, 103

set-source 63, 88, 108, 133, 201
set-source-device . 139
set-spacing . 96
set-span . 224
set-stage . 134
set-state . 133, 214
set-subtitle-uri . 168
set-sync-size . 246
set-text . 225, 229
set-text-direction . 48
set-time . 133
set-timeline . 66, 72, 79
set-tint . 114
set-title . 209
set-uri . 167
set-use-alpha . 207
set-use-markup . 237
set-user-resizable . 209
set-vertical . 96
set-width . 28
set-x . 29
set-x-align . 23
set-y . 30
set-y-align . 23
should-pick-paint . 17
show . 14
show-cursor . 205
skip . 254
start . 78, 254
stop . 254

T
to-cairo-path . 186
transform-stage-point . 34
type . 132

U
unbind-property . 74
unblock-action . 92
unmap . 17
unmerge-objects . 194
unrealize . 15
unset-flags . 14
update . 74
update-interval . 74

V
validate . 154

W
warp-to-state . 214

