
GNU Java Training Wheels
for version 2.0, 25 July 2016

Davin Pearson (davin.pearson@gmail.com)

mailto:davin.pearson@gmail.com

This manual is for GNU Java Training Wheels (version 2.0, 25 July 2016), which is a system
for making it easier for novices to learn to program in the Java language.

Copyright c© 2016 Davin Pearson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 About GNU Java Training Wheels 1

2 J.T.W. Proof of concept #1 A superfor macro . . 3
2.1 Elisp source code for the superfor macro . 4
2.2 A bug in J.T.W. superfor . 11

3 J.T.W. Proof of concept #2 file inclusion 13

4 J.T.W. Tutorials . 15
4.1 Tutorial 1 Your first program . 15
4.2 Tutorial 2 Introduction to programming in Java 17
4.3 Tutorial 3 superfor loops and for loops . 19
4.4 Tutorial 4 Four looping constructs . 22
4.5 Tutorial 5 A beer drinking song . 24
4.6 Tutorial 6 Class variables . 27
4.7 Tutorial 7 Non-Object arrays . 28

4.7.1 Single-dimensional non-Object arrays . 28
4.7.2 Two dimensional non-Object arrays . 30
4.7.3 Three-dimensional non-Object arrays . 31

4.8 Tutorial 8 Accessing functions and class
variables from another class . 31

4.9 Tutorial 9 Mapping class variables to instance variables (also known as
properties) and functions to methods . 39
4.9.1 Elementary classes: using a single class for everything 39
4.9.2 Improved classes: one object per class . 40
4.9.3 True O.O.P.: more than one object per class 42

4.9.4 A common design pattern: private
properties,public constructor and public getters 43

4.9.5 Comparing strings . 45
4.9.6 The null value for references . 46
4.9.7 Why the toString method is better than any other method or . . 46

4.10 Tutorial 10 Object arrays . 47
4.10.1 Single-dimensional arrays of Objects . 47
4.10.2 Two-dimensional arrays of Objects . 49
4.10.3 Three-dimensional arrays of Objects . 50

4.11 Tutorial 11 References to another class . 50
4.12 Tutorial 12 Overloading methods . 52
4.13 Tutorial 13 More about references . 54
4.14 Tutorial 14 Linked lists . 57
4.15 Tutorial 15 Introducing inheritance . 60

4.15.1 Basic Inheritance . 60
4.15.2 Run-time type inquiry . 63

ii

4.15.3 The superclass of all objects . 63
4.16 Tutorial 16 More inheritance . 64
4.17 Tutorial 17 Arrays inheritance and polymorphism 68
4.18 Tutorial 18 Advanced J.T.W. 70

4.18.1 Mapping J.T.W. to Java . 70
4.18.2 Piping the output of javac and java . 72

4.18.3 Makefile for building *.jtw into
*.java and running *.class files . 72

5 Packages in J.T.W. and Java 73
5.1 Moving a class into a package . 73
5.2 Moving a class into a sub-package . 75
5.3 Importing a package . 76
5.4 Importing a package from another package . 76
5.5 How to build a collection of class files or an entire package 77
5.6 How to invoke javadoc on a package . 78

Appendix A GNU Free Documentation License . . 79

Appendix B Passwords for the
answers to the tutorials . 86

Index . 87

1

1 About GNU Java Training Wheels

This document documents a new programming language written by me, Davin Pearson
(email: davin dot pearson at gmail dot com) called J.T.W., short for Java Training Wheels
for the sole purpose of making it easier to learn to program in Java. The J.T.W. language
has a similar syntax to Delphi, Pascal, BASIC and JavaScript and therefore learning J.T.W.
before or while learning Java provides a less steep learning curve than learning Java from
scratch. For many reasons you might even prefer to program in J.T.W. rather than Java.
Here is why you should learn J.T.W. before or while learning Java:

• The J.T.W. language is supported by a parser that troubleshoots problematic J.T.W.
code with clear error messages.

• The J.T.W. language compiles to Java in a natural and straightforward way so it is
easy to learn Java once you know J.T.W.. See the following diagram for a comparison
of the J.T.W. and Java build processes.

+-----+

|*.jtw|

+--+--+

|

v Emacs’ batch mode

+------+ +------+

|*.java| |*.java|

+--+---+ +--+---+

| |

v javac compiler v javac compiler

+-------+ +-------+

|*.class| |*.class|

+--+----+ +--+----+

| |

| java | java

V V

runs the class runs the class

• Pascal-style begin ... end constructs are supported instead of C-style { ... } constructs
which is more sensible especially for novices.

• A simple syntax for the main function: beginMain ... endMain rather than the rather
cumbersome: public static void main(String[] args) { ... }.

• Class variables, properties, functions, methods and constructors are declared as such
much like Delphi which makes your code look clearer. Specifically there are new key-
words classVar, constructor, function, method and property.

• The Delphi/Pascal/JavaScript keyword var for clearer local variables.

• The Pascal/BASIC keyword then for clearer if statements.

• The BASIC and C++ style keywords and and or rather than Java’s rather cumbersome:
&& and ||.

• The P.H.P. keyword elseif is supported instead of Java’s cumbersome else if.

Chapter 1: About GNU Java Training Wheels 2

• As proof of concept, a superfor macro is presented for enhanced BASIC-style for loops.
See Chapter 2 [J.T.W. Proof of concept #1 A superfor macro], page 3.

• As proof of concept, file inclusion is supported so that you can spread a class across sev-
eral files. Natural divisions are methods. Different methods can be placed in different
source files for those situations where methods become large and unwieldy. See

Chapter 3 [J.T.W. Proof of concept #2 file inclusion], page 13.

• NEW! As of J.T.W version 2.0, packages are now supported. See Chapter 5 [Packages
in J.T.W. and Java], page 73.

3

2 J.T.W. Proof of concept #1 A superfor macro

A proof of concept for the J.T.W. preprocessor is the superfor macro, which is an enhanced
BASIC-style for loop. Here is how to invoke the superfor macro in your *.jtw file:

beginMain

superfor (var int i = 0 to 10)

begin

System.out.println("i=" + i);

end

endMain

The above code results in the following printout:

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

The step size argument is optional, here is an example with an explicit step size an-
nounced:

beginMain

superfor (var int i = 0 to 10 step 2)

begin

System.out.println("i=" + i);

end

endMain

The above code results in the following printout:

i=0

i=2

i=4

i=6

i=8

i=10

If the downto keyword is given instead of the to keyword then the loop will count downwards
from the first given number to the second, even if a postive step size is given. Here is an
example with a negative step size:

beginMain

superfor (var int i = 10 downto 0 step 2)

begin

System.out.println("i=" + i);

end

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 4

endMain

The above code results in the following printout:

i=10

i=8

i=6

i=4

i=2

i=0

Note that the specification of the superfor macro doesn’t need constants for the values of
start, stop and step-size. They can be any variable or more generally any Java expression,
and those expressions will be evaluated only once, should your code have side effects, i.e.
changes the value of a variable in your code. See the following example. The expression
++y has the side effect of incrementing the value of y before returning the value of y:

beginMain

var int x = 20;

var int y = 15;

superfor (var int i = x to (2 * ++y))

begin

System.out.println("i=" + i);

end

endMain

The above code results in the following printout:

i=20

i=21

i=22

i=23

i=24

i=25

i=26

i=27

i=28

i=29

i=30

i=31

i=32

2.1 Elisp source code for the superfor macro

The following code belongs in the file ~/jtw/jtw-build-jtw.el which in itself is too large
for inclusion in this manual. You can find this code by visiting [J.T.W. tarball], page 15.
Alternatively, you can study this fragment of the file ~/jtw/jtw-build-jtw.el which deals with
the superfor macro. In the listing that follows, *pp-namespace* stores a string containing
a long arbitrary name to prevent accidental aliasing of the include directives with rest of
the comments code.

(let (p1 p2 str form type variable T var start stop step-size step-size-

2

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 5

this_start this_stop this_step this_step_size file line p-

prior

beg0 end0)

(setq strobe nil)

(checkpoint "2")

(save-excursion

(goto-char (point-min))

(setq *superfor* 0)

(while (re-search-forward "\\<superfor\\>" nil t)

(setq beg0 (match-beginning 0))

(setq end0 (match-end 0))

;;(checkpoint "sitting for 1 seconds...")

(font-lock-fontify-buffer)

;;(sit-for 1)

(when (save-excursion

(save-match-data

(re-search-forward "(" (point-at-eol) t)

(forward-char -1)

(re-search-forward "\\<var\\>" nil t)

(not (warn--inside-comment-or-string))))

;;(error "Smelly cat")

(setq *current-buffer* (current-buffer))

;;(switch-to-buffer *current-buffer*)

(setq p1 beg0)

(assert (save-match-data

(looking-at " \t\r\n*(")))

(setq p2 (save-excursion

(forward-sexp 1)

(point)))

(setq str (buffer-substring-no-properties end0 p2))

;;(checkpoint "str=%s" str)

(setq form (read-str str))

;;(checkpoint "form=%s" form)

;;(debug "form")

(assert (consp form))

(message "*** form=%s" form)

;;(error "Rolling Stones plays Cuba")

(delete-region p1 p2)

(incf *superfor*)

(setq this (format "superfor_%d_" *superfor*))

(when (not (eq (nth 0 form) ’var))

(warn--log-message "Error 35: Keyword var missing from su-

perfor construct")

(when (and (not (eq (nth 1 form) ’char))

(not (eq (nth 1 form) ’short))

(not (eq (nth 1 form) ’int))

(not (eq (nth 1 form) ’long))

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 6

(not (eq (nth 1 form) ’float))

(not (eq (nth 1 form) ’double)))

(warn--log-message (concat

"Error 37:#1 argument type to super-

for macro must be"

" one of char/short/int/long/float/double"))))

(when (eq (nth 0 form) ’var)

(if (and (not (eq (nth 1 form) ’char))

(not (eq (nth 1 form) ’short))

(not (eq (nth 1 form) ’int))

(not (eq (nth 1 form) ’long))

(not (eq (nth 1 form) ’float))

(not (eq (nth 1 form) ’double)))

(warn--log-message (concat

"Error 37:#2 argument type to su-

perfor macro must be"

" one of char/short/int/long/float/double")))

(progn

;;(debug "Radiohead: Let Down")

;; (setq form ’(var int i=0 to stop))

;; (setq form ’(var int i =0 to stop))

;; (setq form ’(var int i = 0 to stop))

(setq type (nth 1 form))

(setq T (prin1-to-string type))

(setq variable (prin1-to-string (nth 2 form)))

(if (string-match "=" variable)

(progn

(setq pre-red-str--variable (substring variable 0 (match-

beginning 0)))

;;(string-match "=" variable-equals)

(setq pre-red-str--start (substring variable (match-

end 0)))

;;(debug "Radiohead: Fitter Happier")

;;(debug "Jean Jarre: Equinoxe Part III")

(setq variable (and (not (string= "" pre-red-str-

-variable))

(prin1-to-string (read-str pre-

red-str--variable))))

(setq start (and (not (string= "" pre-red-str--start))

(prin1-to-string (read-str pre-red-

str--start))))

(cond

((eq (nth 3 form) nil)

(setq start (concat start "()"))

(setq strobe t)

(debug "Queen: One Vision")

(cond

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 7

((eq (nth 4 form) ’to)

(setq to ’to))

((eq (nth 4 form) ’downto)

(setq to ’downto))

(t

(debug "Pretenders: Space Invader")))

(setq stop (prin1-to-string (nth 5 form)))

(cond

((and (eq (nth 6 form) nil) (> (length form) 6))

(setq stop (concat stop "()"))

;;(debug "The Pretenders: Kid")

(if (eq (nth 7 form) ’step)

(setq step-size (nth 8 form))))

((string-match "(" (prin1-to-string (nth 6 form)))

(setq stop (concat stop (and (nth 6 form) (prin1-

to-string (nth 6 form)))))

(if (eq (nth 7 form) ’step)

(setq step-size (nth 8 form))))

((eq (nth 6 form) ’step)

(debug "Pretenders: Private Life")

(setq step-size (nth 7 form)))

(t

;;(debug "Queen: It’s a Kind of Magic")

)

) ;; end COND!

(if strobe (debug "Queen: One Year of Love"))

)

((string-match "(" (prin1-to-string (nth 3 form)))

;;(debug "Public Enemy: Letter to the New York Post")

(setq start (and (nth 3 form) (concat start (prin1-

to-string (nth 3 form)))))

(cond

((eq (nth 4 form) ’to)

(setq to ’to))

((eq (nth 4 form) ’downto)

(setq to ’downto))

(t

(debug "Elvis: King Creole")))

(setq stop (prin1-to-string (nth 5 form)))

(cond

((and (eq (nth 6 form) nil) (> (length form) 6))

(setq stop (concat stop "()"))

;;(debug "The Pretenders: Kid")

(if (eq (nth 7 form) ’step)

(setq step-size (nth 8 form))))

;; --

((string-match "(" (prin1-to-string (nth 6 form)))

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 8

(setq stop (concat stop (prin1-to-string (nth 6 form))))

(if (eq (nth 7 form) ’step)

(setq step-size (nth 8 form))))

;; --

((eq (nth 6 form) ’step)

(debug "Pretenders: Private Life")

(setq step-size (nth 7 form)))

(t

;;(debug "Queen: It’s a Kind of Magic")

)

)

((eq (nth 3 form) ’to)

(setq to ’to)

(setq stop (nth 4 form))

(if (eq (nth 5 form) ’step)

(setq step-size (nth 6 form))

)

;;(debug "aaa")

)

((eq (nth 3 form) ’downto)

(setq to ’downto)

(setq stop (nth 4 form))

(if (eq (nth 5 form) ’step)

(setq step-size (nth 6 form))

)

(debug "bbb")

)

(t

(debug "Dire Straits: The Bug")))

)

;;(debug "Bach’s Mass in B Minor: Et in terra pax")

)

(if (eq (nth 3 form) ’=)

(setq start (and (nth 4 form) (prin1-to-string (nth 4 form))))

(setq start (and (nth 3 form) (prin1-to-string (nth 3 form))))

)) ;; end if!

;;(debug "Bach’s Mass in B Minor: Kyrie eleison")

(cond

((eq (nth 3 form) ’to)

(setq to ’to)

(setq stop (prin1-to-string (nth 4 form)))

(if (and (eq (nth 5 form) nil) (> (length form) 5))

(setq stop (concat stop "()"))

(if (string-match "(" (prin1-to-string (nth 5 form)))

(setq stop (concat stop (prin1-to-string (nth 5 form))))

(if (eq (nth 5 form) ’step)

(setq step-size (prin1-to-string (nth 6 form))))))

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 9

)

((eq (nth 3 form) ’downto)

(setq to ’downto)

(setq stop (prin1-to-string (nth 4 form)))

(if (and (eq (nth 5 form) nil) (> (length form) 5))

(setq stop (concat stop "()"))

(if (string-match "(" (prin1-to-string (nth 5 form)))

(setq stop (concat stop (prin1-to-string (nth 5 form))))

(if (eq (nth 5 form) ’step)

(setq step-size (prin1-to-string (nth 6 form))))))

)

(t

;;(debug "Jean Michel Jarre: Oxygene III")))

;;(debug "Joaquin Rodrigo")

(setq start (prin1-to-string (nth 4 form)))

(cond

((eq (nth 5 form) ’to)

(setq to ’to))

((eq (nth 5 form) ’downto)

(setq to ’downto))

(t

(debug "Dire Straits: Planet of New Orleans")))

(setq stop (prin1-to-string (nth 6 form)))

(if (eq (nth 7 form) ’step)

(progn

(setq step-size (and (nth 8 form) (prin1-to-string (nth 8 form))))

(assert (numberp (nth 8 form)))

)

)

)

)

)

;;(debug "Rod Stewart’s Maggie May")

(progn

(setq var variable)

(setq start-2 (warn--cull-quotes (warn--splat-quest start)))

(setq stop-2 (warn--cull-quotes (warn--splat-quest stop)))

(setq step-size-2 (warn--splat-quest (and step-size (prin1-

to-string step-size))))

) ;; end PROGN!

;; ---

;;(debug "The Pretenders: Precious")

(setq this_start (concat this "start"))

(setq this_stop (concat this "stop"))

(setq this_step (concat this "step"))

(setq this_step_size (concat this "step_size"))

;;(debug "My Parties")

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 10

(insert (concat (concat "var " T " " this_start " = " start-

2 "; ")

(concat "var " T " " this_stop " = " stop-

2 "; ")

(if step-size

(concat "var " T " " this_step " = " step-

size-2 "; "

"var " T " " this_step_size " = "

(cond

((eq to ’to)

(concat "Math.abs(" this_step ")"))

((eq to ’downto)

(concat "-Math.abs(" this_step ")"))

(t

(debug "Dire Straits: Heavy Fuel")))

";\n")

(concat "var " T " " this_step_size " = "

(cond

((eq to ’to)

"1")

((eq to ’downto)

"-1")

(t

(debug "Dire Straits: Ticket to Heaven")))

) ;; end CONCAT!

) ;; end if!

";\n") ;; end CONCAT!

) ;; end INSERT!

;;(debug "Rod Stewart: Hot Legs")

(setq line 0)

(setq p-prior

(save-excursion

(beginning-of-line)

(setq str (concat "^ \t*//+ " *pp-namespace* " #location0-

9"

" (\\(" *drive-spec* "-

a-zA-Z0-9_./+\\):\\(0-9+\\))"))

(if (or (looking-at str) (re-search-backward str nil t))

(progn

;;(debug "Antonio Vivaldi")

(setq file (buffer-substring-no-properties (match-

beginning 1)

(match-

end 1)))

(assert (stringp file))

(setq line (read-str (buffer-substring-no-properties (match-

beginning 3)

Chapter 2: J.T.W. Proof of concept #1 A superfor macro 11

(match-

end 3))))

(assert (integerp line))

(point)

)

(setq file (concat *def-dir* *stump* ".jtw"))

(setq line 1)

(goto-char (point-min))

(forward-line 2)

(point)

)))

(setq line (+ line (count-lines p-prior (point))))

(decf line)

(decf line)

(insert (format "// %s (setq file-stack ’%s)\n" *list-namespace* (prin1-

to-string file-stack)))

(insert (format "// %s #location3 (%s:%d)\n" *pp-namespace* file line))

(insert (concat "for (var " T " " var " = " this_start ";"

" ((" this_step_size " > 0) ? " var " <= "

this_stop " : " var " >= " this_stop "); "

var " += " this_step_size ")"))

(if strobe (debug "Pretenders: The Wait"))

;;(debug "Yehudi Menuhin")

)))))

2.2 A bug in J.T.W. superfor

The question mark operator a ? b : c which expands to

Type result;

if (a) then

begin

result = b;

end

else

begin

result = c;

end

where type can be any Java type is not directly supported by the arguments to the
superfor macro in J.T.W. Elsewhere the question mark is supported. Instead in the superfor
macro you have to write the following code to get a question mark operator online:

class SuperFor

begin

beginMain

foo(1,2);

endMain

function void foo(int x, int y)

begin

12

superfor (var int i=0 to (x < y QUEST 10 : 20))

begin

System.out.print(" " + i);

end

System.out.println();

end

end

where the symbol QUEST compiles into a question mark: ?. When built, the program
prints out the following:

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

13

3 J.T.W. Proof of concept #2 file inclusion

When your classes become large and unwieldy, it becomes useful to split a source file into
several compilation units. the most natural division into compilation units is at the level of
methods. with each method in a separate file you can manage methods that are excessively
large. here is how to use file inclusion in the J.T.W. language. first comes the Foo.jtw file
with all bodies of methods harvested from them:

class Foo

begin

include "Foo-apple.method";

include "Foo-banana.method";

include "Foo-carrot.method";

end

Here are the files that get included. the first file is Foo-apple.method:

property int prop1; /* declares a property for use with the apple method. */

method void apple(/* parameters */)

begin

prop1 = prop1 + 1;

/* rest of body of apple method */

end

the second file is Foo-banana.method:

method void banana(/* parameters */)

begin

/* body of banana method */

end

the third file is Foo-carrot.method:

method void carrot(/* parameters */)

begin

/* body of carrot method */

end

when all of the file inclusions have been carried out by the J.T.W. to java compiler, the
code that javac sees will be something like this:

/* Automatically generated file. Do not edit! */

// #foomatic #location (Foo.jtw:1)

class Foo

{

// #foomatic #location (apple.method:1)

int prop1; /* declares a property for use with the apple method. */

void apple(/* parameters */)

{

prop1 = prop1 + 1;

/* rest of body of apple method */

}

14

// #foomatic #location (banana.method:1)

void banana(/* parameters */)

{

/* body of banana method */

}

// #foomatic #location (carrot.method:1)

void carrot(/* parameters */)

{

/* body of carrot method */

}

// #foomatic #location (Foo.jtw:6)

}

Note the use of the value #foomatic of the string *pp-namespace* (where pp stands for
pre-processor) that is a long arbitrarily defined string to prevent accidental aliasing with
the rest of the commented code that the user of the system might write. The #location
directives are used to keep track of the original line number in the source file. Using Emacs
batch mode executing the Elisp code: jtw-build-jtw.el, error messages in Foo.java now point
back to the original Foo.jtw file, or one of the files that get #included like so: apple.method,
banana.method or carrot.method. If you are particularly clever, you can reuse the same
method in different classes.

Version 1.0 of J.T.W. used the C Pre-Processor (cpp) to manage the #location direc-
tives but unfortunately cpp destroys comments in the target file, and Java uses /** ... */
comments to document the program’s behaviour so cpp cannot be used.

15

4 J.T.W. Tutorials

The following tutorials including full model answers can be found on my Website at the
following location:

http://davin.50webs.com/J.T.W

The advantage of using my online tutorials is that the tutorials have superior syntax
highlighting of the code examples. See the following link Appendix B [Passwords for the
answers to the tutorials], page 86, for the passwords on my Website.

4.1 Tutorial 1 Your first program

Question 4.1.1: Some code to get you started. First, please visit the following Website
http://davin.50webs.com/J.T.W/download-links.html for the programs that you
need to have installed before you can do any coding in J.T.W. You should then download a
tarball (also known as a compressed archive file): http://davinpearson.com/binaries/
java-training-wheels.tar.gz containing the code you need to get started. Then unzip
the tarball and change directory to java-training-wheels and issue the following command
on GNU/Linux systems: ./configure or on MS Windows systems: bash configure. If you
are using M.S. Windows and your HOME variable is unset, then you will need to set it to a
sensible value. Examples of sensible values for your HOME variable include, c:\ or c:\home
or d:\home if your d drive is a hard drive. To set the HOME variable in windows, press
Windows E and right click on My Computer (Windows XP) or This Computer (Windows
10) and click on Properties, then click on Advanced system settings, then click on Advanced,
then click on New environment variable to set the HOME variable.

When you run the configure script you will be prompted for the location of prefix di-
rectory and the location of the place to keep your *.jtw files. You will also be asked if you
want to install just Davin’s jtw-mode or Davin’s full version of Emacs.

NOTE: If are reading this file on your local filesystem then you would have already
completed this question.

Question 4.1.2: Your first J.T.W. program. Traditionally in computer science the first
program that you write in any programming language is a program that does nothing else
but prints out "Hello, World". The following code does just that. In the following code,
note the use of the class construct. In Java and J.T.W., every piece of program code that
does some real computational work resides in a class of some description.

class MyFirstProgram

begin

beginMain

System.out.println("Hello, World!");

endMain

end

The code for any class X in these tutorials should reside in a file called X.jtw. Therefore
the above code should be put into a file called MyFirstProgram.jtw. If two classes X and Y
use each other and X contains the main function then it is convenient to place them both in
a file called X.jtw. To build and run some code, you first need to be in the ~/jtw-tutorials
folder and secondly you need to issue the following shell command: make X.run where X is
the name of the class that you want to run, so it is

http://davin.50webs.com/J.T.W
http://davin.50webs.com/J.T.W/download-links.html
http://davinpearson.com/binaries/java-training-wheels.tar.gz
http://davinpearson.com/binaries/java-training-wheels.tar.gz

Chapter 4: J.T.W. Tutorials 16

make MyFirstProgram.run

in this case. For all the questions that follow this one, it will be assumed that you know
how to do this. See Section 5.5 [How to build a collection of class files or an entire package],
page 77, for more information about building classes that use other classes in different files
or building entire packages.

Question 4.1.3: Multiple calls to System.out.println(). Change the above code from
printing the string "Hello, World!" to printing out the following messages. Please note that
it will be easiest to use multiple calls to System.out.println() which sends text to the screen
for the purpose of viewing.

Hello, Anne! How are you doing?

Hello, Brian! How are you doing?

Hello, Clare! How are you doing?

Question 4.1.4: Functions,parameters and arguments. A function is a piece of code that
does some computational work and optionally returns a value. Notice how the hello function
below takes a value of whose name to say hello to. This value who is called a parameter.
The values passed to the parameter by the call to the function is called an argument. For
the purposes of this question, add two more calls to the hello function in the main function
to get the same result as the code for the previous question. The keyword void indicates
that this function does not return a value. See the next question for a function that does
return a value.

class MySecondProgram

begin

function void hello(String who)

begin

System.out.println("Hello " + who + ", how are you doing?");

end

beginMain

hello("Anne");

endMain

end

Question 4.1.5: Return values. Notice how the following hello function returns a string
rather than printing out the string. Add two more calls to the hello function below to get
the same result as for Question 4.1.4.

class MyThirdProgram

begin

function String hello(String who)

begin

return "Hello " + who + ", how are you doing?";

end

beginMain

System.out.println(hello("Anne"));

endMain

end

Question 4.1.6: Ignoring return values. In J.T.W. and Java, it is not necessary to use a
value that is returned by a function. Sometimes this wastes computational resources since

Chapter 4: J.T.W. Tutorials 17

the value that is computed by the function is not used but other times when the function
whose value is to be ignored does some additional work by setting the value(s) of some
variable(s) to different values then the function call is not a waste of resources. To ignore
the value returned by the hello function, simply call the function without using the value
like so: hello("Ignored"); For the purposes of this question, try calling the hello function
without using the return value by adding a line of code to the main function.

Question 4.1.7: Comments. Study the following code. Note the use of comments.
Comments are used to disable code for debugging purposes and also to help explain how
a program works. The most useful comment in J.T.W. and Java is /** until the first */.
This type of comment is harvested by Javadoc to produce documentation on how a class
works. The second and third most useful comments are (respectively) // until the end of
the line and /* until the first */. The third type of comment is not very useful because
in Java you are not allowed to have one comment inside another, so if you use this type
of comment you will constantly need to search for and remove */ closing comments. In
the tutorials that follow you will see many comments, although mainly the first and second
types of comments.

/** This comment is harvested by Javadoc

to document the MyFourthProgram class */

class MyFourthProgram

begin // I am a single line comment

/* I am

a multi-line

comment */

/** This comment is harvested by Javadoc

to document the hello function */

function String hello(String who)

begin

return "Hello " + who + ", how are you doing?";

end)

/** This comment is harvested by Javadoc

to document the main function */

beginMain

System.out.println(hello("Anne"));

endMain

end

4.2 Tutorial 2 Introduction to programming in Java

Question 4.2.1: The following code returns whether or not the current parameter ch is
a vowel. The parameter ch is of type char which is used to hold the components of a
string. That is to say, strings are built out of sequences of chars. Also note the use of
the Character.toUpperCase function to convert chars into uppercase chars so that the code
works equally well for isVowel(’a’) and isVowel(’A’). Study, compile and run the following
code. Does it print what you expected it to? If not, then fix the bug.

class Scrabble

begin

function boolean isVowel(char ch)

Chapter 4: J.T.W. Tutorials 18

begin

ch = Character.toUpperCase(ch);

if ((ch == ’A’) or (ch == ’E’) or (ch == ’I’) or (ch == ’O’) or (ch == ’U’))

then return true;

else return false;

end

beginMain

System.out.println(isVowel(’a’));

endMain

end

In the above code, note the difference between a = b example: ch = Charac-
ter.toUpperCase(ch) and a == b example: ch == ’A’. The first is an assignment that sets
a to be whatever the value of b is, while the second is a question that says whether or not
the two arguments a and b are equal.

Note that later on in this tutorial you will learn that this is not the way to compare two
strings. Also note the use of the boolean return type. This means that the return value is
either true or false.

Question 4.2.2: By copying the pattern established by the above code, write a function
isConsonant which returns whether or not the given argument is not a vowel. The easiest
way to do this is to write isVowel(ch) == false which means: “ch is not a vowel”. You will
also need to ensure that the parameter ch is greater than or equal to ’A’ and less than or
equal to ’Z’. Then test your code by calling isConsonant from the main function.

Question 4.2.3: By copying the pattern established in the following code:

function int countVowels(String word)

begin

var int result = 0;

superfor (var int i=0 to i<word.length()-1)

begin

var char ch = word.charAt(i);

if (isVowel(ch)) then result = result + 1;

end

return result;

end

write a function that counts the number of consonants in a word. Note the use of the
var keyword for defining variables that are local to functions. Local variables are very much
like parameters that were introduced in the previous tutorial. In the above code, note the
use of word.charAt(i) and word.length(). The first of these results the character at location
in the string word given by the value of i and the second of these returns the length of the
string word. In Tutorial 11 you will learn that these are called methods which are different
from functions that currently know how to write. Until we get to this tutorial and we are
ready to teach you how to write your own methods, you will only call existing methods such
as the above methods of the String class. Then test your code by calling it from the main
function.

Question 4.2.4: Write a function simpleScoreWord that calls countVowels and count-
Consonants to give a Simple Score of a word. The Simple Score of a word is the number of

Chapter 4: J.T.W. Tutorials 19

vowels in the word plus the number of consonants in the word times ten. Then test your
code by calling it from the main function.

Question 4.2.5: Write a function advancedScoreLetter that returns the Advanced Score of
a letter. Here is a breakdown of the distribution of letters for the purpose of the calculation
of the Advanced Scores.

2 blank tiles (scoring 0 points)

1 point: E 12 tiles, A 9 tiles, I 9 tiles, O 8 tiles, N 6 tiles, R 6 tiles, T 6 tiles, L 4 tiles, S 4 tiles, U 4 tiles

2 points: D 4 tiles, G 3 tiles

3 points: B 2 tiles, C 2 tiles, M 2 tiles, P 2 tiles

4 points: F 2 tiles, H 2 tiles, V 2 tiles, W 2 tiles, Y 2 tiles

5 points: K 1 tiles

8 points: J 1 tiles, X 1 tiles

10 points: Q 1 tiles, Z 1 tiles

Then test your code by calling it from the main function.

Question 4.2.6: Write a function advancedScoreWord that returns the Advanced Score
of a word. The Advanced Score of a word is the sum of the Advanced Scores of each letter
in the word. If the word is eight letters long then you should add an extra, say, 50 points
to the score. Then test your code by calling it from the main function.

Question 4.2.7: Comparing strings. Amend the advancedScoreWord function so that
swear words get a score of zero. For the purposes of this question you only need to think of
three swear-words to add to the code. In the interests of not offending anyone, please keep
your choice of swear words very tame. When comparing strings it is a mistake to use ==
which you already know is how you compare the following types that you know of so far:
booleans, chars and ints. Using == on strings compiles and runs but gives you the incorrect
result. The correct method to compare strings is to use the equals method of the string
class like so: word.equals("bugger") which returns true or false, depending on whether or
not the string word currently holds the value "bugger".

Question 4.2.8: Change the advancedScoreWord function so it works equally well with
uppercase words and lowercase words. You will need write to call either word.toUpperCase()
or word.toLowerCase() and store the result in word.

4.3 Tutorial 3 superfor loops and for loops

Question 4.3.1a: For loops that count up in steps of one. Study the following code and
verify that it prints out "2 3 4 5 6 7 8 9 10" by compiling and running it. Notice that the
System.out.print() function call doesn’t print a carriage return after printing the argument
value. That is why the System.out.println() function call is needed at the end of the for
loops superfor and for, to print a carriage return at the end of the line. Also note the use
of the plus sign to concatenate a string and the number to produce string result.

class ForTest

begin

beginMain)

/* Here is the superfor loop: */

superfor (var int i=2 to 10) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

Chapter 4: J.T.W. Tutorials 20

for (var int i=2; i<=10; i=i+1) System.out.print(" " + i);

System.out.println();

endMain

end

Question 4.3.1b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "5 6 7 8 9 10".

Question 4.3.1c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "234 235 236 237 238".

Question 4.3.1d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "48 49 50 ... 75 76".

Question 4.3.1e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "-5 -4 -3 -2 -1 0 1 2 3".

Question 4.3.2a: For loops that count up in steps greater than one. Study the following
code and verify that it prints out "10 15 20 25 30 35 40" by compiling and running it.

class ForTest

begin

beginMain)

/* Here is the superfor loop: */

superfor (var int i=10 to 40 step 5) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i=10; i<=40; i=i+5) System.out.print(" " + i);

System.out.println();

endMain

end

Question 4.3.2b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "20 25 30 35 40".

Question 4.3.2c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "100 105 110 115 120 125".

Question 4.3.2d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "2 4 6 8 10 12 14".

Question 4.3.2e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "10 13 16 19 22 25".

Question 4.3.3a: For loops that count down in steps of one. Study the following code
and verify that it prints out "10 9 8 7 6 5 4 3 2 1" by compiling and running it.

class ForTest

begin

beginMain

/* Here is the superfor loop: */

superfor (var int i=10 downto 1) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i=10; i>=1; i=i-1) System.out.print(" " + i);

System.out.println();

Chapter 4: J.T.W. Tutorials 21

endMain

end

Question 4.3.3b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "10 9 8 7 6 5 4".

Question 4.3.3c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "20 19 18 17 16 15 14 13 12".

Question 4.3.3d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "66 65 64 ... 47".

Question 4.3.3e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "3 2 1 -1 -2 -3 -4 -5 -6 -7".

Question 4.3.4a: For loops that count down in steps greater than one. Study the following
code and verify that it prints out "100 90 80 70 60 50 40 30 20" by compiling and running
it.

class ForTest

begin

beginMain

/* Here is the superfor loop: */

superfor (var int i=100 downto 20 step -10) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int=100; i>=20; i=i-10) System.out.print(" " + i);

System.out.println();

endMain

end

Question 4.3.4b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "80 70 60 50 40 30 20".

Question 4.3.4c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "500 490 480 470 460".

Question 4.3.4d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "10 8 6 4 2 0".

Question 4.3.4e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "33 28 23 18 13 8 3".

Question 4.3.5a: For loops that use floating point numbers to count. Study the following
code and verify that it prints out "1.1 2.2 3.3 4.4" by compiling and running it. The type
name double is short superfor double precision floating point. It is natural to ask: why
not use single precision floating point? The answer to this question is that double precision
floating point gives fewer compilation errors than single precision floating point does.

class ForTest

begin

beginMain)

/* Here is the superfor loop: */

superfor (var double i=1.1 to 4.4 step 1.1) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

Chapter 4: J.T.W. Tutorials 22

for (var double i=1.1; i<=4.4; i=i+1.1) System.out.print(" " + i);

endMain

end

Question 4.3.5b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "0 2.2 4.4 6.6". Note that rounding errors may prevent you from getting
this exact answer. Also note that the answer to this question is not what your would naively
expect without running the code.

Question 4.3.5c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "-30 -19.9 -9.8 0.3 10.4 20.5".

Question 4.3.5d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "100.0 96.7 93.4 90.1 86.8 83.5 80.2 76.9".

Question 4.3.5e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "-100.0 -105.5 -111.0 -116.5".

Question 4.3.6a: For loops that use chars to count. Study the following code and verify
that it prints out "a b c d e f g h i j k l m n o p q r s t u v w x y z" by and running it.

class ForTest

begin

beginMain

/* Here is the superfor loop: */

superfor (var char i=’a’ to ’z’) System.out.print(" " + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var char i=’a’; i<=’z’; i=i+1) System.out.print(" " + i);

System.out.println();

endMain

end

Question 4.3.6b: Change the superfor loop and the ordinary for loop to print out the
following numbers: "a b c d e f".

Question 4.3.6c: Change the superfor loop and the ordinary for loop to print out the
following numbers: "z y x w v u t s r q p o n m l k j i h g f e d c b a".

Question 4.3.6d: Change the superfor loop and the ordinary for loop to print out the
following numbers: "p o n m l k j i h".

Question 4.3.6e: Change the superfor loop and the ordinary for loop to print out the
following numbers: "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z".

4.4 Tutorial 4 Four looping constructs

Question 4.4.1: Study, compile and run the following code:

class LoopTest

begin

function int powerOf2A(int n)

begin

var int counter = n;

var int result = 1;

while (counter > 0)

Chapter 4: J.T.W. Tutorials 23

begin

result = 2 * result;

counter = counter - 1;

end

return result;

end

function int powerOf2B(int n)

begin

var int counter = n;

var int result = 1;

do

begin

result = 2 * result;

counter = counter - 1;

end while (counter > 0);

return result;

end

function int powerOf2C(int n)

begin

var int result = 1;

for (var int counter = n; counter > 0; counter = counter - 1)

begin

result = 2 * result;

end

return result;

end

function int powerOf2D(int n)

begin

var int result = 1;

superfor (var int counter=n downto 1)

begin

result = 2 * result;

end

return result;

end

/**

* Prints a row of stars of a given length.

*/

function void printLineC(int length)

begin

for (var int i = 0; i<length; i=i+1)

begin

System.out.print("#");

Chapter 4: J.T.W. Tutorials 24

end

System.out.println();

end

beginMain

// For Question 4.4.1 add some code here...

endMain

end

Question 4.4.2: To the main function add some code to call the functions powerOf2A,
powerOf2B, powerOf2C and powerOf2D to verify that they all return the same result. To
inspect the result you will need to apply the System.out.println() statement to the values
returned by those functions.

Question 4.4.3: There is a bug in the powerOf2B function because it does not behave
correctly in the case when n is zero or less. Put an if (...) then ... statement at the top of
this function to make it handle the case of zero properly. Also make it return 1 in the case
that n is less than zero.

Question 4.4.4: There is a bug in the powerOf2D function because it does not behave
correctly in the case when n is zero or negative. Make it return 1 if n <= 0. Put an if (...)
then ... statement at the top of this function to make it handle these cases properly. Since
this function returns an int, make it return 1 in these cases.

Question 4.4.5: By copying the pattern of powerOf2A, powerOf2B, powerOf2C and
powerOf2D, write functions printLineA, printLineB and printLineD that work identically
to the function printLineC, except that they use while loops, do loops and superfor loops,
respectively. Add some code to the main function to test them out.

Question 4.4.6: Based on the previous three questions, is there a best looping construct?
Or does it depend on what the looping construct is going to be used for?

4.5 Tutorial 5 A beer drinking song

Question 4.5.1: Study the following code and then compile and run it to verify that it prints
out the lyrics to a popular song:

class BeerSong

begin

beginMain

System.out.println("Five bottles of beer on the wall.");

System.out.println("Five bottles of beer on the wall.");

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("there’d be four bottles of beer on the wall.");

System.out.println();

System.out.println("Four bottles of beer on the wall.");

System.out.println("Four bottles of beer on the wall.");

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("there’d be three bottles of beer on the wall.");

System.out.println();

System.out.println("Three bottles of beer on the wall.");

System.out.println("Three bottles of beer on the wall.");

Chapter 4: J.T.W. Tutorials 25

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("there’d be two bottles of beer on the wall.");

System.out.println();

System.out.println("Two bottles of beer on the wall.");

System.out.println("Two bottles of beer on the wall.");

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("There’d be one bottle of beer on the wall.");

System.out.println();

System.out.println("One bottle of beer on the wall.");

System.out.println("One bottle of beer on the wall.");

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("there’d be no bottles of beer on the wall.");

System.out.println();

endMain

end

Question 4.5.2: The following is the first attempt to make the code smaller but to keep
the same output: If you compile and run the following code you will notice that it counts
up from one rather than down from n. Change the for loop so that it runs down rather
than up. For information about how to write the for loop, please consult Tutorial 4.2.

class BeerSong

begin

function song(int n)

begin

superfor (var int i=1 to n)

begin

System.out.println(i + " bottles of beer on the wall");

System.out.println(i + " bottles of beer on the wall");

System.out.println("If one bottle of beer should accidentally fall,");

System.out.println("there’d be " + (i-1) + " bottles of beer on the wall");

System.out.println();

end

end

beginMain

song(5);

endMain

end

Question 4.5.3: Finish the number2string function below and add a new function call to
this function in the song function so that it print textual numbers rather than digits.

function String number2string(int n)

begin

assert n>=0 : n;

assert n<=10: n;

if (n == 0) then return "no";

if (n == 1) then return "one";

if (n == 2) then return "two";

Chapter 4: J.T.W. Tutorials 26

/* rest of code goes here */

if (n == 9) then return "nine";

if (n == 10) then return "ten";

assert false;

end

Question 4.5.4: Add a new function String capitalize(String s) that capitalizes the first
word in a String and call this function from the song function so that the first words in
each sentence are capitalized. You should find the function Character.toUpperCase and the
methods charAt and substring in the package java.lang helpful for writing this function.
See the class String in the package java.lang at http://docs.oracle.com/javase/1.5.0/
docs/api for more details.

Question 4.5.5: Add new function call String plural(int n) that returns the string "s"
if n is not equal to 1 and the empty string "" otherwise. Then call this function from the
song function so that the phrase "bottle" is pluralized when it should be.

Question 4.5.6: Write a function called number2string2 that can handle values up to but
not including 100. Note that you will need multiple if ... then statements to achieve this.
Note that if n is a number then the following expressions are useful:

var int temp1 = n / 10 % 10 results in temp1 holding the tens digit of n and is zero in the case that n<10.

var int temp2 = n % 10 results in temp2 holding the ones digit of n.

Also make it print out "one hundred or more" in the case that n>=100

Question 4.5.7: Change the song function so that the following function call:
song(5,"rum"); in the main function results in the following printout:

Five bottles of rum on the wall.

...

there’d be no bottles of rum on the wall.

Question 4.5.8: Once all the code is working, add the following line to the main function:
song(100,"gin"); so that it prints out the following:

One hundred bottles of gin on the wall.

...

there’d be zero bottles of gin on the wall.

Question 4.5.9: Write a new function number2string3 that works like number2string2
and number2string except that it handles numbers up to 999. Internally number2string3
should call number2string2. You might find the following function useful:

function String textand(String a, String b)

begin

if (a.equals("") or b.equals("")) then return a + b;

else return a + " and " + b;

end

Question 4.5.10: Tricky! Write a new function number2string4 that works like num-
ber2string3 execpt that it handles numbers up to nine hundred and ninety-nine million nine

http://docs.oracle.com/javase/1.5.0/docs/api
http://docs.oracle.com/javase/1.5.0/docs/api

Chapter 4: J.T.W. Tutorials 27

hundred and ninety-nine thousand nine hundred and ninety-nine, i.e. 999,999,999. The
function number2string4 should internally call number2string3 like so:

var String ones = number2string3(n % 1000);

var String thousands = number2string3(n / 1000 % 1000);

var String millions = number2string3(n / 1000 / 1000 % 1000);

Note that the variables above will have values from 0 to 999 inclusive.

4.6 Tutorial 6 Class variables

Question 4.6.1: Study, compile and run the following code. Note the use of the class variable
myMoney. A class variable is different from a variable that is local to a function because
the lifetime of the class variable is for the duration that the program is run, whereas the
lifetime of a local variable is for the duration of the function call. In the code that follows,
the variable myMoney is used to store a numerical value, for how much money you have.

class Money

begin

/** Property myMoney stores money value in dollars */

classVar int myMoney;

function void spend(String item, int value)

begin

myMoney = myMoney - value;

System.out.println("*** spent $" +

value +

" on " + item +

", leaving you with $" + myMoney);

end

end

beginMain

myMoney = 100;

spend("aquarium",50);

spend("shoes",100);

spend("lipstick",20);

endMain

end

Question 4.6.2: Change the myMoney class variable so that it is a double (short for
double-precision floating point) rather than an int. You will need to add a new function
money2string that converts double values into strings. For example the floating point
number 1.2345 should be printed out as $1.23. If x is a double then the following expression
converts x from a double into a number of dollars (int)x and the following expression converts
x into a number of cents (int)(money * 100) - 100 * dollars. Note that you will need to
make it so that $1.03 prints out as this value.

Question 4.6.3: Add an if statement to the spend function so that it uses
System.out.println() to print out an error message if the person does not have enough
funds in their bank account to pay for the item parameter.

Chapter 4: J.T.W. Tutorials 28

Question 4.6.4: Add a new class variable double governmentsMoney and make it so that
12.5% of the cost of each item goes to the government in the form of G.S.T., which stands
for Goods and Services Tax, a value-added tax.

Question 4.6.5: Add a new class variable numBattleships that records how many bat-
teships are owned by the government. Write a function buyBattleShips that causes the
government to buy as many battleships as it can afford. Make it so that the buyBat-
tleShips function prints out how many battleships were purchased. Let the cost of each
battleship be one million dollars and store this value in a variable called costOfShip. Please
note that if the government’s money is less the one million dollars then no battleships will
be purchased.

Question 4.6.6: Set the initial value for governmentsMoney to be two millions dollars,
then call the buyBattleShips function and verify that two battleships were purchased.

4.7 Tutorial 7 Non-Object arrays

This tutorial teaches you how to create single-dimensional and multi-dimensional arrays of
non-Objects. The non-Object types in Java are those which aren’t declared inside a class,
so it includes the following types: boolean, char, int, float and double. A helpful convention
in Java is that the non-object types start with a lowercase letter, while object types start
with an uppercase letter, such as for example the String class as an example of an Object
type. In addition to this, two different array initialization syntaxes are presented.

4.7.1 Single-dimensional non-Object arrays

Question 4.7.1: Here is an example of a convenient one dimensional array initialization
syntax. Study, compile and run the following code. The code int[] should be read out loud
as int array indicating the variable a is an int array, also known as an array of ints. Note
that the first value of the for loop below is zero. This is because in J.T.W. and Java, the
first index of an array is zero not one. This convention harks back to the old days of the C
Programming Language and is used because it is more efficient in the low level of machine
language than counting arrays from one.

beginMain

var int[] a = { 1,2,3 };

superfor (var int i=0 to a.length-1)

begin

System.out.println("a[" + i + "]=" + a[i]);

end

endMain

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize
an array like so:

a = { 4,5,6 }; // Compilation error

Luckily there is a way array around this oversight and that is to use a design pattern
where you introduce a temporary variable like so:

var int[] temp = { 4,5,6 };

a = temp; // Array "a" now holds 4 5 6

Later you will learn why this design pattern is useful for re-initializing multi-dimensional
arrays.

Chapter 4: J.T.W. Tutorials 29

Question 4.7.2: Write a function print that takes an int array argument and prints out
the array. You will need to use the length property of the array parameter so your function
works with arbitrary sized arrays. Change the main function to what follows so that it
contains a call to the print function.

var int[] a = { 1,2,3 };

print(a);

Question 4.7.3: Write a function with same name as the previous print function, except
that this one should take an argument that is a double[], also known as a double array.
Two functions with the same name in the same class is allowed in Java and the practice of
using has a special name that is: function name overloading. Overloading is only allowed
when the two functions with the same name have different parameters. When you call an
overloaded function J.T.W. and Java looks at the number and types of the arguments a
determines from this which of the overloaded functions to call. Change the main function
to what follows so that it initializes an array of double-precision floating point variables and
then calls the second print function.

var double[] b = { 1.1,2.2,3.3 };

print(b);

Here is an example of a second initialization syntax. For this particular example it is
better to use the simpler, earlier initialization syntax, but when the size of the array to be
created is to be determined at run-time, then the second syntax should used. The next
question will show you an example of this.

beginMain

var int[] a = new int[3];)

// at this point the array is all zeroes

for (var int i=0; i<3; i=i+1)

begin

a[i] = i;

end

print(a);

endMain

Question 4.7.4: Write a function create takes one int argument, the size of the array
to create and returns an int array of that size. Make it so the ith element of the array is
initialized to i. Call this function from the main function like so:

beginMain

var int[] a = create(3);

print(a);

endMain

Question 4.7.5: Write a function create2 takes one int argument, the size of the array
to create and returns a double array of that size. Make it so the ith element of the array
is initialized to i.i. Why is it not possible to overload that create function? Try it and see
what the compiler says. Call create2 from the main function like so:

beginMain

var double[] a = create2(3);

print(a);

endMain

Chapter 4: J.T.W. Tutorials 30

Question 4.7.6: Write a function doubler that takes an int array x and returns a new int
array result that is twice as big as x. Copy x into result before you return it. The extra
elements in the result should all be zero.

Question 4.7.7: Change the doubler function so that every zero in the array result is set
to the value 13.

4.7.2 Two dimensional non-Object arrays

Question 4.7.8: Here is an example of a convenient two dimensional array initialization
syntax. Study, compile and run the following code. The code int[][] should be read out
loud as int array array indicating that the variable a is an int array array, also known as a
two-dimensional array of ints.

beginMain

var int[][] a = { { 1,2,3 } { 4,5 } { 6 } }

for (var int y=0; y<a.length; y=y+1)

begin

for (var int x=0; x<a[y].length; x=x+1)

begin

System.out.print(" " + a[y][x]);

end

System.out.println();

end

endMain

Question 4.7.9: By copying the pattern of the code above, do some more overloading of
the print function by writing two new print functions, one taking a two dimensional array
of ints, the other taken a two dimensional array of doubles. The call both of these functions
from the main function.

Note that if x is a two dimensional array of ints, then x[i] is a one dimensional array of
ints for each in the range 0 ... x.length-1. Note that in the above code, a[0] is an array
of three ints, a[1] is an array of two ints and a[2] is an array of one int. The reason these
sub-arrays are all of different sizes is to save your computer’s precious memory. For example
you can have one sub-array much longer than all of the others without needing to allocate
a whole bunch of memory that will go unused. Since a[0] is an int array, you would naively
expect it to be able to be re-initialized like so:

a[0] = { 4,5,6,7};)

so that after this code a[0] holds the four element long array 4,5,6 and 7. But as
mentioned above in [Single-dimensional non-Object arrays], page 28, this doesn’t work
because of a design oversight by the creators of Java. Luckily as mentioned above there is
a way around this oversight and that is to use a temporary variable like so:

var int[] temp = { 4,5,6,7};

a[0] = temp;) // Array "a[0]" now holds 4 5 6 7

Like with one dimensional arrays, there is a second initialization syntax for two dimen-
sional arrays and here it is. Unlike the above code the sub-arrays a[0], a[1] and a[2] are all
of equal size, namely three.

var int[][] a = new int[3][3];

Chapter 4: J.T.W. Tutorials 31

a[0][0] = 1; a[1][0] = 2; a[2][0] = 3;

a[0][1] = 4; a[1][1] = 5;

a[0][2] = 6;

Question 4.7.10: Write a function create3 and create4 that takes on int argument size
and returns a two dimensional array of ints or doubles, respectively. Make is so that if a is
the name of the returned array, then a[y][x] is set to the value of x+y.

4.7.3 Three-dimensional non-Object arrays

Question 4.7.11: Using the knowledge you have gained so far about arrays, create, initialize
and print a three-dimensional array of ints.

4.8 Tutorial 8 Accessing functions and class variables from
another class

Question 4.8.1: Study, compile and run the following code which resides in a file called
Box.jtw. Notice the use of System.out.print() to print without a trailing newline and Sys-
tem.out.println() to print with a trailing newline. The ln part tells you this.

class Box

begin

function void square(int n)

begin

superfor (var int y=0 to n-1)

begin

superfor (var int x=0 to n-1)

begin

if ((x == 0) or (x == n-1) or (y == 0) or (y == n-1))

then System.out.print("#");

else System.out.print(" ");

end

System.out.println();

end

end

beginMain

square(5);

endMain

end

Notice that here is the output of the above code for different values of the n parameter:

n=1 #

n=2 ##
##

Chapter 4: J.T.W. Tutorials 32

n=3 ###
#
###

n=4 ####
#
#
####

n=5 #####
#
#
#
#####

Question 4.8.2: By copying the pattern established in the above code, write a now
function square2 that generates the following output. Note that you will need to remove
some of the or clauses in the square method above to get the following output:

n=1 #

n=2 ##
##

n=3 ###

###

n=4 ####

####

n=5 #####

#####

Chapter 4: J.T.W. Tutorials 33

Question 4.8.3: By copying the pattern established in the above code, write a now
function square3 that generates the following output: n=1

n=1 #

n=2 ##
##

n=3 # #
#
#

n=4 # #
#
#
#

n=5 # #
#
#
#
#

Question 4.8.4: Study, compile and run the following code which resides in a file called
Box.java:

class Box

begin

function void x(int n)

begin

superfor (var int y=0 t0 n-1)

begin

superfor (var int x=0 to n-1)

begin

if ((x == y) or (x == n-1-y)) then System.out.print("#");

else System.out.print(" ");

end

System.out.println();

end

end

beginMain

x(5);

Chapter 4: J.T.W. Tutorials 34

endMain

end

Notice that here is the output of the above code for different values of the n parameter:

n=1 #

n=2 ##
##

n=3 # #
#
#

n=4 # #
##
##
#

n=5 # #
#
#
#
#

Question 4.8.5: By copying the pattern established in the above code, write a now
function x2 that generates the following output. Note that you will need to remove one of
the or clauses in the x function above to get the following output:

n=1 #

n=2 #
#

n=3 #
#
#

Chapter 4: J.T.W. Tutorials 35

n=4 #
#
#
#

n=5 #
#
#
#
#

Question 4.8.6: By copying the pattern established in the above code, write a now
function x3 that generates the following output. Note that you will need to remove one of
the or clauses in the x method above to get the following output:

n=1 #

n=2 #
#

n=3 #
#
#

n=4 #
#
#
#

n=5 #
#
#
#
#

Question 4.8.7: Study, compile and run the following code which resides in a file called
Box.java:

class Box

begin

function void triangle(int n)

Chapter 4: J.T.W. Tutorials 36

begin

superfor (var int y=0 to n-1)

begin

superfor (var int x=0 to n-1)

begin

if (x < y)

then System.out.print("#");

else System.out.print(" ");

end

System.out.println();

end

end

beginMain

triangle(5);

endMain

end

Notice that here is the output of the above code for different values of the n parameter:
n=1

n=1 #

n=2 #
##

n=3 #
##
###

n=4 #
##
###
####

n=5 #
##
###
####
#####

Question 4.8.8: By copying the pattern established in the above code, write a new
function triangle2 that generates the following output. Note that you will need to change
the if clause in the triangle method above to get the following output: n=1

Chapter 4: J.T.W. Tutorials 37

n=1 #

n=2 ##
#

n=3 ###
##
#

n=4 ####
###
##
#

n=5 #####
####
###
##
#

Question 4.8.9: Write a new function called box that generates the following output.
Note that you will need to modify the triangle method above to get the following output:

n=1 #

n=2 ##
##

n=3 ###
###
###

n=4 ####
####
####
####

Chapter 4: J.T.W. Tutorials 38

n=5 #####
#####
#####
#####
#####

Question 4.8.10: Add the following code to Box.java:

class Grid

begin

/* NOTE: the use of "final" below to denote a value whose value cannot be changed. */

final classVar int SIZE = 20;

/* NOTE: the array below is a two-dimensional array */

classVar boolean[][] array = new boolean[SIZE][SIZE];

function void set(int x, int y, boolean v)

begin

if ((x>=0) and (x<SIZE) and (y>=0) and (y<SIZE)) then

begin

array[x][y] = v;

end

end

function void print(int size)

begin

superfor (var int y=0 to size-1)

begin

superfor (var int x=0 to size-1)

begin

if (array[x][y])

then System.out.print("#");

else System.out.print(" ");

end

System.out.println();

end

System.out.println();) // prints an empty line between shapes

end

end

Question 4.8.11: The following question will guide you through the process of making
the drawing algorithm more powerful. Instead of printing the shapes directly to the screen,
they will be stored in an array to be printed out only when the array has been completely
set. You don’t need to know a great deal about arrays to answer the remaining questions
of this section as the array code has been written for you in the Grid class above. For every
call to System.out.println() in Box.java, replace it with a call to the set method of the Grid
class. Note that the third parameter in the set method is of type boolean, that is to say

Chapter 4: J.T.W. Tutorials 39

it must be either true or false. To call a function of another class you need to prefix the
name of the class like so: Grid.set(/* argument values */). Finally at the end of all of the
functions in the Box class except for the main function you will need to call the Grid.print
method of the Grid class to actually print out the array.

Question 4.8.12: Re-initialize the boolean array array named array from the main func-
tion of the Box class. HINT: to access a class variable from another class, you need to prefix
it with the name of its class name, in this case it is Grid. Re-initialize the array variable to
a two-dimensional array of dimensions 100 x 100. Also set the size variable to 100 so that
the functions of the Grid class still work.

4.9 Tutorial 9 Mapping class variables to instance variables
(also known as properties) and functions to methods

4.9.1 Elementary classes: using a single class for everything

For the purpose of the text that follows, O.O.P. stands for Object Oriented Programming.

Question 4.9.1: Study, compile and run the following code:

class PersonDriver1

begin

classVar String homersName = "Homer Simpson";

classVar int homersAge = 40; // Homer’s age in years

classVar String fredsName = "Fred Flintstone";

classVar int fredsAge = 45; // Fred’s age in years

classVar String darthsName = "Darth Vader";

classVar int darthsAge = 55; // Darth’s age in years

function void growHomer()

begin

homersAge = homersAge + 1;

end

function void growFred()

begin

fredsAge = fredsAge + 1;

end

function void growDarth()

begin

darthsAge = darthsAge + 1;

end

function void knightHomer()

begin

homersName = "Sir " + homersName;

end

function void knightFred()

begin

Chapter 4: J.T.W. Tutorials 40

fredsName = "Sir " + fredsName;

end

function void knightDarth()

begin

darthsName = "Sir " + darthsName;

end

function void printHomer()

begin

System.out.println("I am " + homersName + ", my age is " + homersAge);

end

function void printFred()

begin

System.out.println("I am " + fredsName + ", my age is " + fredsAge);

end

function void printDarth()

begin

System.out.println("I am " + darthsName + ", my age is " + darthsAge);

end

beginMain

growHomer();

knightHomer();

printHomer();

printFred();

printDarth();

endMain

end

Question 4.9.2: By copying the pattern established in the existing code write a some
new class variables to represent a new person called Barak Obama. Note that he was born
August 4, 1961 so at the time of writing this manual he is 54 years old.

Question 4.9.3: Then write some functions to work with this new person.

Question 4.9.4: Finally call those functions from the main function.

4.9.2 Improved classes: one object per class

As your program gets large (say over 1000 lines) then it becomes no longer practical to put
all of your code in the same class. So it is natural to put each piece of related code in its
own class. The J.T.W. programming language supports splitting a class into its constituent
methods and having one file for each method. Simply use the include directive and J.T.W.
will include the file for you like so:

include "a.method";

will include a method named a.

Question 4.9.5: Study, compile and run the following code: Each of these classes can
be put in their own file. For each class X, this class can be put into a file called X.jtw.
However for the purposes of this tutorial you will probably find it easier to merge all of the
classes into the same file into a file called PersonDriver2.jtw

Chapter 4: J.T.W. Tutorials 41

class Homer

begin

classVar String name = "Homer Simpson";

classVar int age = 40;) // Homer’s age in years

function void grow()

begin

age = age + 1;

end

function void knight()

begin

name = "Sir " + name;

end

function void print()

begin

System.out.println("I am " + name + ", my age is " + age);

end

end

class Fred

begin

classVar String name = "Fred Flintstone";

classVar int age = 45;) // Fred’s age in years

function void grow()

begin

age = age + 1;

end

function void knight()

begin

name = "Sir " + name;

end

function void print()

begin

System.out.println("I am " + name + ", my age is " + age);

end

end

class Darth

begin

classVar String name = "Darth Vader";

classVar int age = 55;) // Darth’s age in years

function void grow()

begin

age = age + 1;

end

Chapter 4: J.T.W. Tutorials 42

function void knight()

begin

name = "Sir " + name;

end

function void print()

begin

System.out.println("I am " + name + ", my age is " + age);

end

end

class PersonDriver2

begin

beginMain

Homer.grow();

Fred.knight();

Homer.print();

Fred.print();

Darth.print();

endMain

end

Question 4.9.6: By copying the pattern established in the existing code write a new class
to represent Barak Obama.

Question 4.9.7: Call the functions from the main function of the driver class.

4.9.3 True O.O.P.: more than one object per class

To allow for more than one object per class, most if not all class variables needs to be
made into what are called instance variables (or more simply and more commonly known
as properties) and most if not all functions need to be made into what are called methods.

Question 4.9.8: Study, compile and run the following code:

class Person

begin)

/*

* NOTE: the use of the "property" keyword here instead of the

* "classVar" keyword.

*/

property String name; // Person’s full name

property int age; // Person’s age in years

/*

* NOTE: the use of the "method" keyword here instead of the

* "function" keyword.

*/

method void grow()

begin

age = age + 1;

end

Chapter 4: J.T.W. Tutorials 43

method void knight()

begin

name = "Sir " + name;

end

method void print()

begin

System.out.println("I am " + name + ", my age is " + age);

end

beginMain

var Person h = new Person();

h.name = "Homer Simpson";

h.age = 40;

var Person f = new Person();

f.name = "Fred Flintstone";

f.age = 45;

var Person d = new Person();

d.name = "Darth Vader";

d.age = 55;

h.grow();

h.knight();

h.print();

f.print();

d.print();

endMain

end

In the above code, note the use of three references h, f and d.

Question 4.9.9: By copying the pattern established in the existing code add some code
to the main function add some code to create a new person for Barak Obama.

4.9.4 A common design pattern: private properties,public
constructor and public getters

A common design pattern in Java and one that I present for you in the following code is to
make all of the properties of a class effectively read-only to all client classes by making all
of the properties private and providing non-private getter methods for getting the values of
the properties. It is possible for the original class to change the values of the properties but
other classes (such as PersonTest below) are not capable of doing this, without calling a
method of the original class such the grow and knight methods of the Person class. Finally
an additional thing known as a constructor is used to ensure that objects are initialized
with meaningful values for their properties.

Chapter 4: J.T.W. Tutorials 44

Question 4.9.10: Study, compile and run the following code:

class Person

begin

private property String name;

private property int age; // Age in years

)

//

// NOTE: Getter methods

//

public method String getName()

begin

return name;

end

public method int getAge()

begin

return age;

end

public constructor Person(String aName, int anAge)

begin

this.name = aName;

this.age = anAge;

end

public method void grow()

begin

age = age + 1;

end

public method void knight()

begin

name = "Sir " + name;

end

public method void print()

begin

System.out.println("I am " + name + ", my age is " + age);

end

end

class PersonDriver3

begin

beginMain

//

Chapter 4: J.T.W. Tutorials 45

// NOTE: In the following constructor calls the age and name are set by the constructor

//

var Person h = new Person("Homer Simpson",40);

var Person f = new Person("Fred Flintstone",45);

var Person d = new Person("Darth Vader",55);

h.grow();

h.knight();

h.print();

f.print();

d.print();

h.name = "Luke Skywalker";) // ERROR: name is private

h.age = h.age + 1; // ERROR: age is private

System.out.println("name=" + h.name); // ERROR: name is private

System.out.println("age=" + h.age); // ERROR: age is private

System.out.println("name=" + h.getName()); // OK: getter is non-private

System.out.println("age=" + h.getAge()); // OK: getter is non-private

endMain

end

Note that you will have to remove the error lines from the above file for the code to
compile.

Question 4.9.11: By copying the pattern established in the existing code add some code

to the main function to create a new person called Hillary Clinton. Hillary Clinton was

born on October 26, 1947 so at the time of writing this manual she was 68 years old

4.9.5 Comparing strings

Question 4.9.12: Add a method unknight() which removes the "Sir " title if he has one.
One trap for young players in J.T.W. or Java is to use the operator == to compare strings
like so:

function boolean myCompare(String a, String b)

begin

return a == b;) // Works but not as expected!

end

It compiles without error, but doesn’t give you the result you were expecting. Instead
you need to use the equals method of the String class like so:

function boolean myCompare(String a, String b)

begin

return a.equals(b);

end

More generally, if x and y are a references to objects, then x == y returns whether or
not x and y are pointing to the same object, whereas x.equals(y) returns whether or not the
contents of the objects referred to by x and y are equal. The meaning of the word contents

Chapter 4: J.T.W. Tutorials 46

varies from class to class, but in the case of strings it means that the strings contain the
same data.

You will also find the String class’ substring and (toUpperCase or toLowerCase) methods
useful here too. See the class String in the package java.lang at http://docs.oracle.com/
javase/1.5.0/docs/api for more details of these two methods.

4.9.6 The null value for references

As soon as you learn how to use references you need to know that all reference variables
could conceivably hold the value null, meaning no value. In particular when properties are
themselves references as you will discover in Tutorial 11, then those properties are initialized
to null by default. Object arrays that you will learn about in Tutorial 10 using the second
of two initialization syntaxes are also initialized to null by default.

4.9.7 Why the toString method is better than any other method
or

property for debugging

If x is a reference to a class X (including this for the current class) and if m is a method
of X and p is a property of X, and if x is currently null, then the following lines result in a
NullPointerException being thrown when executed:

x.p;

x.m();

whereas if x is null then

System.out.println(x); and

System.out.println("x=" + x);

prints out, respectively:

null, and

x=null.

If x is not null, it calls

System.out.println(x.toString());

System.out.println("x=" + x.toString());

so these expressions are safer to use than any other method or property in situations
where x might be null. The syntax of the toString method is as follows:

public method String toString()

begin

// Code goes here...

end

Importantly for reasons which will be explained later the toString method must be
declared with public visibility. For other properties and methods to be used safely with null
references you need to wrap a conditional if construct around the calling of the method or
property like so for properties:

if (x != null)

then begin

System.out.println(x.p);

end

http://docs.oracle.com/javase/1.5.0/docs/api
http://docs.oracle.com/javase/1.5.0/docs/api

Chapter 4: J.T.W. Tutorials 47

or like so for methods:

if (x != null)

then begin

System.out.println(x.m());

end

Therefore the toString method is more convenient than any other method or property.

Question 4.9.13: Change the print method above from a method that prints out to the
screen to a method called toString that returns a String.

Question 4.9.14: Call the toString method instead of the print methods in the main
function.

4.10 Tutorial 10 Object arrays

This tutorial teaches you how to create single-dimensional and multi-dimensional arrays of
Objects. The Object types are all types execept for boolean, char, int, float and double.
A helpful convention in Java is that the Object types start with an uppercase letter, while
non-Object types start with a lowercase letter, such as for example the String class as an
example of an Object type. In addition to this, two different array initialization syntaxes
are presented.

4.10.1 Single-dimensional arrays of Objects

Question 4.10.1: Here is an example of a convenient one-dimensional array initialization
syntax. Study, compile and run the following code. The code Person[] should be read out
loud as “person array” indicating the variable a is a person array, also known as an “array
of persons”.

class Person

begin

private property String name;

constructor Person(String aName)

begin

name = aName;

end

public String toString()

begin

return name;

end

end

class PersonTest

begin

beginMain

var Person[] a = { new Person("Person # 1"), new Person("Person # 2"), new Person("Person # 3") };

superfor (var int i=0 to a.length-1)

begin

Chapter 4: J.T.W. Tutorials 48

System.out.println("a[" + i + "]=" + a[i]);

end

endMain

end

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize
an array like so:

// Compilation error

a = { new Person("Person # 4"), new Person("Person # 5"), new Person("Person # 6"), new Person("Person # 7") };

Luckily there is a way array around this oversight and that is to use a design pattern
where you introduce a temporary variable like so:

// No error

var Person[] temp = { new Person("Person # 4"), new Person("Person # 5"), new Person("Person # 6"), new Person("Person # 7") };

a = temp; // Array "a" now holds Person # 4,Person # 5,Person # 6,Person # 7

Later you will learn why this design pattern is useful for re-initializing multi-dimensional
arrays.

Question 4.10.2: Write a function in the class PersonTest called print that takes a Person
array argument and prints out the array. You will need to use the length property of the
array parameter so your function works with arbitrary sized arrays. Change the main
function to what follows so that it contains a call to the printx function.

var Person[] a = { new Person("Person # 1"), new Person("Person # 2"), new Person("Person # 3")};

print(a);

Question 4.10.3: Write your own class called Mine similar to the Person class with a one
int parameter constructor, a private int property p and a toString method that converts p
to a string. Then write a function in the PersonTest class with same name as the previous
print function, except that this one takes a Mine[], also known as a Mine array. You might
recall from Tutorial 7 that this practice of having two functions with the same name is called
function name overloading. Change the main function to what follows so that it initializes
an array of Mine point variables and then calls the second print function.

var Mine[] b = { new Mine(1), new Mine(2), new Mine(3) };

print(b);

Here is an example of a second initialisation syntax. For this particular example it is
better to use the simpler, earlier initialisation syntax, but when the size of the array to be
created is to be determined at run-time, then the second syntax should used. The next
question will show you an example of this.

beginMain

var Person[] a = new Person[3];

// at this point the array is all nulls

superfor (var int i=0 to a.length-1)

begin

a[i] = new Person("Person # " + (i+1));

end

print(a);

endMain

Chapter 4: J.T.W. Tutorials 49

Question 4.10.4: Write a function create takes one int argument, the size of the array
to create and returns a Person array of that size. Make it so the ith element of the array is
initialised to "Person # " + i. Call this function from the main function like so:

beginMain

var Person[] a = create(3);

print(a);

endMain

Question 4.10.5: Write a function create2 takes one int argument, the size of the array
to create and returns a Mine array of that size. Make it so the ith element of the array’s
toString method prints out "Mine # " + i. Why is it not possible to overload that create
function? Try it and see what the compiler says. Call create2 from the main function like
so:

beginMain

var Mine[] a = create2(3);

print(a);

endMain

Question 4.10.6: Write a function doubler that takes a Person array x and returns a new
Person array called result twice as big as x. Copy x into the result before you return it.
The extra elements in result should all be null.

Question 4.10.7: Change the doubler function so that every null in the array result is set
to a new Person make it so that every new Person Object has a different name property.

4.10.2 Two-dimensional arrays of Objects

Question 4.10.8: Here is an example of a convenient two dimensional array initialization
syntax. Study, compile and run the following code. The code Person[][] should be read out
loud as person array array indicating the variable a is a person array array, also known as
a two-dimensional array of persons.

beginMain

var Person[][] a = { { new Person("Person # 1"), new Person("Person # 2"), new Person("Person # 3") },

{ new Person("Person # 4"), new Person("Person # 5") },

{ new Person("Person # 6") } };

superfor (var int y=0 to a.length-1)

begin

superfor (var int x=0; to a[y].length-1)

begin

System.out.print(" " + a[y][x]);

end

System.out.println();

end

endMain

Question 4.10.9: By copying the pattern of the code above, do some more overloading of
the print function by writing two new print functions, one taking a two dimensional array of
Person, the other taken a two dimensional array of Mine. The call both of these functions
from the main function.

Chapter 4: J.T.W. Tutorials 50

Since a[0] is a Person array,you would naively expect it to be able to be re-initialised like
so:

a[0] = { new Person("Person # 4"),

new Person("Person # 5"),

new Person("Person # 6") };

so that after this code a0 holds the four element long array Person #4,Person #5 and
Person #6, but it does’t work owing to a design oversight by the creators of Java. Luckily
as mentioned above there is a way around this oversight and that is to use a temporary
variable like so:

var Person[] temp = { new Person("Person # 4"),

new Person("Person # 5"),

new Person("Person # 6") };

a[0] = temp; // Array "a[0]" now holds Person # 4,Person # 5,Person # 6

Like with one-dimensional arrays, there is a second initialization syntax for
two-dimensional arrays and here it is. Unlike the above code the sub-arrays a[0],a[1] and
a[2] are all of equal size, namely three.

beginMain

var Person[][] a = new Person[3][3];

a[0][0] = new Person("Person # 1");

a[0][1] = new Person("Person # 2");

a[0][2] = new Person("Person # 3");

a[1][0] = new Person("Person # 4");

a[1][1] = new Person("Person # 5");

a[1][2] = new Person("Person # 6");

a[2][0] = new Person("Person # 7");

a[2][1] = new Person("Person # 8");

a[2][2] = new Person("Person # 9");

endMain

Question 4.10.10: Write a function create3 and create4 that takes an int argument size
and returns a two-dimensional array of Person or Mine, respectively. Make is so that each
Person or Mine Object has its own number, using a separate counter variable var int count.

4.10.3 Three-dimensional arrays of Objects

Question 4.10.11: Using the knowledge you have gained so far about arrays, create, initialize
and print a three-dimensional array of Persons. Make it so that each Person Object is given
its own number using a separate counter variable var int count.

4.11 Tutorial 11 References to another class

The following code presents example involving three classes Flea, Dog and DogOwner to
represent the idea that a dog has a flea and a dog-owner has a dog. The class DogTest
is the driver class. The key concept of this tutorial is that classes can have references of
objects of another class in order to set up a relationship between the two classes.

Question 4.11.1: Study the following code and find the two bugs in it. Fix the bugs and
then compile and run it to verify that it prints out "p=I am a flea called Pop".

class Flea

Chapter 4: J.T.W. Tutorials 51

begin

property String name;

constructor Flea(String aName)

begin

aName = name;

end

public method String toString()

begin

return "I am a flea called " + name;

end

end

class Dog

begin

property String name;

property int age; // Age in years

property Flea dogsFlea;

constructor Turtle(String aName, int anAge, Flea aFlea)

begin

name = aName;

age = anAge;

dogsFlea = aFlea;

end

end

class DogTest

begin

beginMain

Flea p = new Flea("Pop");

Flea s = new Flea("Squeak");

Flea z = new Flea("Zip");

System.out.println("p=" + p);

endMain

end

Question 4.11.2: In the main function of the DogTest class, write code to call the toString
method for the fleas referenced by s and z.

Question 4.11.3: In the main function of the DogTest class, write code to construct three
dogs called "Fido", "Jimbo" and "Rex". For the purposes of the rest of these questions,
let the name of the references for Fido, Jimbo and Rex be f, j and r. Note that the third
parameter to the Dog class is of type Flea. Therefore you will need to supply a Flea reference
for each dog. Make it so that Fido has a flea called Pop, Jimbo has a flea called Squeak,
and Rex has a flea called Zip.

Chapter 4: J.T.W. Tutorials 52

HINT: If the flea called Pop is referenced by the variable name p, then this reference
should appear as the third argument in one of the calls to the Dog constructor.

Question 4.11.4: Write a toString method in the Dog class that works like the toString
method in the Flea class. Then call this method from the main function to print out the
full statistics of the three dogs that you have just created in Question 11.3.

Question 4.11.5: By copying the pattern of the Flea and Dog classes, write a class
DogOwner that has three non-private properties: name, salary and ownersDog. Also write
a three-parameter constructor for the DogOwner class that sets these properties.

Question 4.11.6: Add some code into the main function to construct three dog owners
called Angus, Brian and Charles. Make it so that Angus has a dog called Rex, Brian has a
dog called Jimbo, and Charles has a dog called Fido. For the purposes of the rest of these
questions, let the name of the references for Angus, Brian and Charles be (respectively) a,
b and c. Use the Dog references that you created in Question 11.3 to achieve this. Make it
so that Angus, Brian and Charles have initial salaries of 10,000, 20,000 and 30,000.

Question 4.11.7: Without changing the call to the DogOwner constructor, change the
value of the salary property of object referenced by a to 1,000,000. Note that since the
salary property of the DogOwner class is non-private you should be able to set the value of
the salary property from the main function of DogTest.

Question 4.11.8: Write a toString method for the class DogOwner and add some code
to the main function to call it for Angus, Brian and Charles.

Question 4.11.9: What is the value of: a.ownersDog.dogsFlea.toString()? Add some
code to the main function to find out if it does what you think it should do.

4.12 Tutorial 12 Overloading methods

Question 4.12.1: Write constructors for the classes SportsShoe and Runner below, by looking
at the main function to see how many arguments each constructor has.

class SportsShoe

begin

property String model; // what kind of shoe it is

property double speedBoost; // the boosting factor of the shoe

// constructor goes here:

// Useful method for debugging

public method String toString()

begin

return "I am a shoe called " + model + " and my boosting factor is " + speedBoost;

end

end

class Runner

begin

private property String name; // Runner’s name.

private property int speed; // speed of runner in km/hr.

Chapter 4: J.T.W. Tutorials 53

private property SportsShoe shoes; // which shoe they are wearing.

// constructor goes here:

// Useful method for debugging

public method String toString()

begin

return "I am a runner and my name is " + name + " and my shoes are " + shoes;

end

/**

*** This private method computeSpeed works out the runners speed,

*** based on their basic speed and the speed boost due to the

*** SportsShoe that they are currently wearing.

*/

// method goes here:

/**

** Prints the result of racing two runners against each other.

*/

function void race(Runner r1, Runner r2)

begin

if (r1.computeSpeed()>r2.computeSpeed())

then begin

System.out.println("Runner " + r1.name + " beats " + r2.name);

end

else begin

System.out.println("Runner " + r2.name + " beats " + r1.name);

end

end

/**

** Swaps the shoes of two runners.

*/

function void swapShoes(Runner r1, Runner r2)

begin

var SportsShoe tempShoe = r1.shoes;

r1.shoes = r2.shoes;

r2.shoes = tempShoe;

end

end

class RunnerTest

begin

beginMain

var SportsShoe nike = new SportsShoe("Nike NX-71", 2.0);

var SportsShoe reebock = new SportsShoe("Reebock R20", 2.3);

Chapter 4: J.T.W. Tutorials 54

var SportsShoe puma = new SportsShoe("Puma P200-MMX",4.8);

var Runner sg = new Runner("Speedy Gonzalez", 55, nike);

var Runner sw = new Runner("Slick Willy", 49, reebock);

var Runner fa = new Runner("Fat Albert", 15, puma);

Runner.race(sg,sw);

// Runner.race(sg,sw,fa);

// sg.raceAgainst(sw);

endMain

end

Question 4.12.2: In the Runner class, write the private method computeSpeed that has
no arguments and returns a double-precision floating point value that equals the runner’s
running speed. Note that the speed of a runner is determined by multiplying their speed
property with the speedBoost property of the shoes that they are wearing. For example,
Speedy Gonzalez’s running speed = 55 * 2.0 = 110.0.

Question 4.12.3: Fix the race method so that it checks for a draw.

Question 4.12.4: By copying the race method, write a three-parameter race method for
racing three runners against each other. Two methods in the same class with the same
name is called overloading in J.T.W. and Java. Add a call to this method from the main
function.

Question 4.12.5: What is the difference between a method and a function? Write a
one parameter method raceAgainst that behaves exactly like two-parameter function race.
There are two ways of doing this, one is to optionally use the this keyword rather than one
of the parameters r1 or r2. The second way is for race to simply call race using this as one
of the arguments to the function.

Question 4.12.6: Is it true that any method can be re-worked into a function and vice
versa?

Question 4.12.7: The swapShoes method in the Runner class swaps the shoes of two
runners. Add some code to the main function to swap the shoes of two runners and verify
that the shoes do indeed get swapped.

Question 4.12.8: Write a method called swapNames that swaps the names of two runners.
You can put this function into any class but it makes the most sense to put it into the Runner
class since it has two Runner parameters.

Question 4.12.9: Write a method swapSpeeds that swaps the speed properties of two
runners.

4.13 Tutorial 13 More about references

Question 4.13.1: Study, compile and run the following code:

class Car

begin

/**

* Car’s model name

*/

Chapter 4: J.T.W. Tutorials 55

property String model;

/**

* Car’s value in dollars

*/

property int value;

/**

* Car’s serial number

*/

property int serialNumber;

/**

* Global serial number counter

*/

private classVar int serialCounter = 1000;

constructor Car(String aModel, int aValue)

begin

model = aModel;

value = aValue;

serialNumber = serialCounter;

serialCounter = serialCounter + 1;

end

public method String toString()

begin

return "I am a car, model=" + model + ", value=" + value +

", serial number=" + serialNumber;

end

end

class Owner

begin

/**

* Owner’s full name

*/

property String name;

/**

* Owner’s money in dollars

*/

property int money;

/**

* Owner’s car

Chapter 4: J.T.W. Tutorials 56

*/

property Car ownersCar;

constructor Owner(String aName, int aMoney, Car aCar)

begin

name = aName;

money = aMoney;

ownersCar = aCar;

end

public method String toString()

begin

return "I am a car owner, name=" + name + ", money=" + money +

", car=" + ownersCar;

end

public method void describe()

begin

System.out.println(toString());

end

end

class CarTest

begin

beginMain

var Car ford = new Car("Ford Escort",1000);

var Car nissan = new Car("Nissan Nivara",2000);

var Owner joe = new Owner("Joe Bloggs",500,ford);

) // Mary has no car to start with.

var Owner mary = new Owner("Mary Smith",600,null);

joe.describe();

endMain

end

Question 4.13.2: What is the purpose of the class variable serialCounter?

Question 4.13.3: Write a method sellCar that increases the owner’s money by half the
value of their car and the owner’s car reference gets set to null, for no car. If the owner
owns no car (null) simply do nothing.

Question 4.13.4: Write a method in the Owner class called purchase so that:

Car newCar = new Car("Mini Cooper",1000);

joe.purchase(newCar);

results in Joe’s money going down by $1000 and Joe’s car being set to newCar. Before
Joe purchases their new car, call the sellCar method so that Joe sells his current car before

Question 4.13.5: Write a function in the Owner class called netWorth so that:

System.out.println("Joe’s net worth = " + joe.netWorth());

prints out Joes’ money plus the value of his car, if he has a car.

Chapter 4: J.T.W. Tutorials 57

Question 4.13.6: Write a method in the Owner class called smashCar so that:

mary.smashCar();

halves the value of Mary’s car.

Question 4.13.7: Write a method in the Owner class called stealCarFrom so that:

mary.stealCarFrom(joe);

results in Mary selling his current car (if he has one) for its market value and Mary
acquiring ownership of Joe’s car. Also call Mary’s sellCar method so that Mary sells her
current car before stealing Joe’s car.

Question 4.13.8: Write a function in the Owner class called swapMoney so that:

Owner.swapMoney(joe,mary);

swaps the money of Joe and Mary.

Question 4.13.9: Write a function in the Owner class called swapCars so that:

Owner.swapCars(joe,mary);

swaps the cars of Joe and Mary.

Question 4.13.10: Write a function in the Car class called swapSerialNumbers so that:

Car.swapSerialNumbers(ford,nissan);

swaps the serial numbers of ford and nissan.

Question 4.13.11: Write a function in the Owner class called sellCarTo so that

joe.sellCarTo(mary);

results in Joe’s money going up by the value of his car and Mary’s money going down by
the value of his car, and the ownership of Mary’s car gets transferred to Joe.

4.14 Tutorial 14 Linked lists

Dr Seuss’ story “Yertle the Turtle” (https: / / en . wikipedia . org / wiki /

Yertle_the_Turtle) describes how a turtle called Yertle sits at the top of a pile of other
turtles. In this example, the pile of turtles is represented by a linked list of Turtle objects,
with the down property serving to connect one Turtle object to another. If a Turtle object
has a non-null down property, then this represents the fact that it is sitting on top of
another turtle. The last turtle in the linked list is the turtle that is at the bottom of the
pile, which has a null value for its down property. Note that you cannot use the superfor
construct for iterating through a linked list. In this case the for construct is the most
sensible.

Question 4.14.1: Study, compile and run the following code:

class Turtle

begin

private property String name; // Turtle’s name

private property int age; // Turtle’s age in years

private property double weight; // Turtle’s weight in kg

// NOTE: this property allows for linked lists

property Turtle down;

https://en.wikipedia.org/wiki/Yertle_the_Turtle
https://en.wikipedia.org/wiki/Yertle_the_Turtle

Chapter 4: J.T.W. Tutorials 58

constructor Turtle(String aName, int anAge, double aWeight)

begin

name = aName;

age = anAge;

weight = aWeight;

end

/** Getter method for name property */

method String getName()

begin

return name;

end

/** Useful method for debugging */

public method String toString()

begin

return name;

end

end

class TurtleTest

begin

beginMain

var Turtle yertle = new Turtle("Yertle", 103, 20);

var Turtle zippy = new Turtle("Zippy", 102, 30);

var Turtle bungle = new Turtle("Bungle", 101, 40);

// *** see later

yertle.down = zippy;

zippy.down = bungle;

bungle.down = null; // NOTE: not needed as bungle.down is null by default

var int totalWeight = 0;

// NOTE: demonstrates how to iterate through a linked list:

for (var Turtle current = yertle; current != null; current=current.down)

begin

totalWeight = totalWeight + current.getWeight();

end

System.out.println("The total weight is " + totalWeight);

endMain

end

The code in the main function after the *** sets down the following relationships between
the three Turtle objects (Yertle, Bungle and Zippy). The following diagram shows the
relationship between the different turtles. When you traverse the list of turtles you must

Chapter 4: J.T.W. Tutorials 59

always start at the top turtle (known as the head of the linked list). If you give a different
value for the top turtle, your code will think that the given turtle is the one at the top of
the pile and you will get the wrong result.

+------+

|Yertle|

+------+----+

|

+------+<---+

|Zippy |

+------+----+

|

+------+<---+

|Bungle|

+------+----+

|

null<---+

Question 4.14.2: Move the code for calculating the total weight of the turtles from the
main function to a function called function void printTotalWeight(Turtle bottom) in the
Turtle class that prints out the total weight of the turtles. Then call that function from
the main function to get the same result as before. Note that that if printTotalWeight
was a method then calling that method using null (representing an empty list) like so:
null.printTotalWeight() would be an error, whereas Turtle.printTotalWeight(null) wouldn’t
be and therefore is better. This is one example of how methods and functions differ.

Question 4.14.3: Revision question for getters. By copying the pattern established by
the getName method, add two getter methods to the Turtle class: getAge which returns
the current turtle’s age and getWeight which returns the current turtle’s weight. Then call
these methods on the Yertle object in the main function. Note that the toString method
would be more appropriate as it handles nulls better but you know that the yertle reference
is not null so you know it is safe to call the getAge and getWeight methods on the yertle
reference.

Question 4.14.4: Write a function Turtle findBottomTurtle(Turtle top) that returns the
Turtle object that is at the top of the pile, and returns null if there isn’t one.

Question 4.14.5: Then call this function from the main function using Sys-
tem.out.println() and the top turtle Yertle.

Question 4.14.6: Write a function Turtle findOldestTurtle(Turtle top) that returns the
oldest turtle or null if there isn’t one.

Question 4.14.7:Then call this function from the main function using Sys-
tem.out.println() and the top turtle Yertle.

Question 4.14.8: Write a function Turtle findHeaviestTurtle(Turtle top) returns the
heaviest turtle, or null if there isn’t one.

Question 4.14.9: Then call this function from the main function using Sys-
tem.out.println() and the top turtle Yertle.

Chapter 4: J.T.W. Tutorials 60

Question 4.14.10: Write a function sayPile(Turtle top) that prints the names of the
turtles in the pile starting from the top turtle and finishing at the bottom turtle. Then call
this function from the main function.

Question 4.14.11: Under what circumstances would it be okay to change the visibility of
the down property to private, like the name, age and weight properties?

Question 4.14.12: Add an extra parameter to the constructor which is a reference the
to the turtle on below the current one. Then remove all occurrences of the down property
from the main function. Note that you will need to reverse the order that the turtles are
created so the bottom turtle is constructed first and so on. The advantage of this is that it
enables you to change the visibility of the down property to private.

4.15 Tutorial 15 Introducing inheritance

4.15.1 Basic Inheritance

When you see the following code: class X extends Y, it means that class X inherits from
the class Y. Class X is called the subclass and the class Y is called the super-class or
sometimes the parent class. When the class X extends from Y, it pulls in all of the non-
private methods and properties from the super-class Y. Inherited methods can override
the behaviour of that same method in the super-class to give behaviour that is specific to
the subclass. The concept of methods overriding other methods is called dynamic method
binding or more commonly the more impressive-sounding name: polymorphism. The main
thing that this tutorial shows is the idea that inheritance is a non-symmetrical relationship.
For example: in the code that follows, the Bird class inherits from the Animal class, which
corresponds to the idea that every bird is an animal. The reverse, every animal is a bird is
plainly not true! Inheritance forces you to recognize this.

Question 4.15.1: Study, compile and run the following code. The following code shows
how inheritance works. In the following code, the Bird class inherits from the Animal class.
The Bird class pulls in the Animal class’s age property and the canFly and talk methods.
Importantly the canFly property overrides the behaviour of the canFly method of the parent
Animal class, which reflects that fact that generally speaking, birds can fly. In the code that
follows, note that int properties are initialized to zero by default and the super method (also
known as the constructor of the super-class) is called by default if there is a zero parameter
constructor in the super-class, which there is by default, even if you don’t write one!

class Animal

begin

property int age; // Animal’s age in years

property int health; // Animal’s health in hit points

constructor Animal()

begin

age = 0; // NOTE: not needed as set by default

health = 100;

end

Chapter 4: J.T.W. Tutorials 61

method boolean canFly()

begin

return false;

end

method void talk()

begin

System.out.println("Hello");

end

end

class Bird extends Animal

begin

property double flySpeed;) // Bird’s speed in km/h

constructor Bird()

begin

super(); // NOTE: not needed as called by default

flySpeed = 0; // NOTE: not needed as set by default

end

method boolean canFly()

begin

return true;

end

method void peck()

begin

System.out.println("peck");

end

end

class InheriTest

begin

beginMain

var Bird eagle = new Bird();

eagle.talk();

eagle.peck();

endMain

end

Question 4.15.2: Override the talk method of the Animal class in the Bird class to print
out “Tweet Tweet!” rather than “hello” to give more accurate talking of bird objects.

Question 4.15.3: By copying the pattern established in the Bird class, change the eagle
from an instance of the Bird class to its own class in its own right and then create an
instance of that class in the main function of InheriTest. Your Eagle class should have one

Chapter 4: J.T.W. Tutorials 62

property: int numberOfKills and one method: void attack() that internally increments the
value of numberOfKills. In the main function you should call every method of the Eagle
class and its super-classes.

Question 4.15.4: What is the advantage of using a new separate class to represent a new
object rather than using an instance of an existing class?

Question 4.15.5: Create a new class Kiwi that inherits from the Bird class. Your Kiwi
class should override the canFly method to return false, which reflects the fact that generally
speaking birds can fly, but the kiwi bird in particular does not fly. Your Kiwi class have
a property numberOfWorms. Once you have written the Kiwi class you should create an
instance of the Kiwi class in the main function.

Question 4.15.6: Why does the following line of code in the main function print out 100
but there is no setting of that variable to that value in the Kiwi class?

System.out.println(k.health);

Question 4.15.7: In the classes Animal, Bird, Eagle and Kiwi, remove all of the canFly
methods and replace it with a single canFly property of the Animal class. In the constructors
you will need to set the value of the canFly property to a value that is appropriate for that
class. For example in the Bird class’s constructor you should set the canFly property to
true, while in the Kiwi class’s constructor you should set the canFly property to false.

Question 4.15.8: What is the advantage of having a canFly property over a bunch of
canFly methods?

There is an equally valid alternative to having a public property in the Animal class and
that is to have in the Animal class a private property canFly and a pair of methods for
getting and setting the value of the canFly property like so. These methods in J.T.W. and
Java are called getter methods and setter methods since, as their names suggest, getters
are used for getting the value of something and setters are used for setting the value of
something. Nore that the canFly method of the code above corresponds to getCanFly
method in the code below.

private property boolean canFly;

method boolean getCanFly()

begin

return canFly;

end

method void setCanFly(boolean aCanFly)

begin

canFly = aCanFly;

end

You might think that it is simpler to have one thing (a single non-private property)
rather than three things (a private property and a non-private getter method and a non-
private setter method) and you would be right. However from the point of view of the client
code that uses the Animal class, the two approaches are identical. Later on when you learn
more you will understand under what circumstances the second getter and setter approach
is better.

Chapter 4: J.T.W. Tutorials 63

Question 4.15.9: Change the main function to what follows:

beginMain

var Bird b = new Bird(10);

var Animal a = b;

a.talk();

a.peck();

endMain

When you compile this code it gives a compilation error. What line gives the error and
what is the reason for the error?

Question 4.15.10: Change the main function to what follows:

beginMain

var Animal a = new Animal();

var Bird b = a;

b.talk();

b.peck();

endMain

When you compile this code it gives a compilation error. What line gives the error and
what is the reason for the error?

4.15.2 Run-time type inquiry

In J.T.W. and Java there is a keyword called instanceof that does a run-time check on the
type of an object. The following function:

function void say(Animal a)

begin

System.out.println(a instanceof Bird);

end

uses the instanceof keyword to determine the run-time type of the reference a and prints
out whether or not the reference is referring to a Bird object. Some examples should clarify
the situation:

• say(new Bird()) prints true, Since the parameter a is pointing to a bird object at
run-time,

• say(new Animal()) prints false since not every animal is a bird,

• say(new Eagle()) prints true, since every eagle is a bird, and

• say(new Kiwi()) prints true, since every kiwi is a bird.

• var Animal a = new Animal(); say(a); prints false since at run-time a is not pointing
to a bird object

• var Animal a = new Bird(); say(a); prints true since at run-time a is pointing to a bird
object.

In Tutorial 17 you will learn why in most cases it is better to use polymorphism instead
of the instanceof keyword for run-time type enquiry.

4.15.3 The superclass of all objects

Every class in Java inherits either directly or indirectly from a class called Object. That is
to say if x is a reference variable, then the run-time expression x instanceof Object is always

Chapter 4: J.T.W. Tutorials 64

true except for the pathological case where x is null (i.e. is currently pointing to no object).
The Object class contains a method called toString that returns a string containing the
run-time class name of the object concatenated with the hash code of the memory address
of the object in base 16 (also known as hexadecimal) format. Since every class inherits
from Object, every object can have toString invoked upon it. Even better, every class X
can override toString to provide debugging information that is tailored to X. Therefore the
toString method is convenient for debugging. Since the toString method is a public method
of the Object class it must be overridden as a public method, since your overridden function
cannot have weaker access privileges.

4.16 Tutorial 16 More inheritance

This tutorial shows you a practical example of inheritance. The file StarWars.jtw is com-
prised of three classes: XWing, TieFighter and StarWars. The first two represent spacecraft
from the two sides of the Star Wars films. The class StarWars is the driver class and contains
code for executing a battle between the X-Wings and the Tie Fighters.

Question 4.16.1: Study, compile and run the following code:

class XWing

begin

private property int shields;

private property int weapon;

private property boolean dead;

constructor XWing()

begin

shields = 1000;

weapon = 10;

end

method int getWeapon()

begin

return weapon;

end

method boolean isDead()

begin

return dead;

end

method void hit(int damage)

begin

shields = shields - damage;

if (shields<0)

then begin

System.out.println("BOOM!!!");

dead = true;

end

end

Chapter 4: J.T.W. Tutorials 65

end

class TieFighter

begin

private property int shields;

private property int weapon;

private property boolean dead;

constructor TieFighter()

begin

shields = 500;

weapon = 20;

end

method int getWeapon()

begin

return weapon;

end

method boolean isDead()

begin

return dead;

end

method void hit(int damage)

begin

shields = shields - damage;

if (shields<0)

then begin

System.out.println("BOOM!!!");

dead = true;

end

end

end

class StarWars

begin

private function void duel(XWing x, TieFighter t)

begin

for (;;)

begin

x.hit(t.getWeapon());

if (x.isDead())

then begin

System.out.println("X-Wing is dead");

break;

Chapter 4: J.T.W. Tutorials 66

end

t.hit(x.getWeapon());

if (t.isDead())

then begin

System.out.println("Tie Fighter is dead");

break;

end

end

end

private function void battle(XWing good, TieFighter evil)

begin

var int g = 0;

var int e = 0;

var int goodDeaths = 0;

var int evilDeaths = 0;

while (g<good.length and e<evil.length)

begin

System.out.println("battling X-Wing #" + g + " versus Tie Fighter #" + e);

duel(goodg,evile);

if (goodg.isDead())

then begin

g = g + 1;

goodDeaths = goodDeaths + 1;

end

if (evile.isDead())

then begin

e = e + 1;

evilDeaths = evilDeaths + 1;

end

end

var int finalGood = good.length - goodDeaths;

var int finalEvil = evil.length - evilDeaths;

System.out.println();

System.out.println("Battle Report: X-Wings Tie Fighters");

System.out.println("--");

System.out.println();

System.out.println("Initial ships:" + good.length + " " + evil.length);

System.out.println();

System.out.println("Killed ships:" + goodDeaths + " " + evilDeaths);

System.out.println();

System.out.println("Final ships:" + finalGoodPD + " " + finalEvil);

System.out.println();

if (finalGood>finalEvil)

Chapter 4: J.T.W. Tutorials 67

then begin

System.out.println("The rebel alliance is victorious!");

end

else begin

System.out.println("The dark side has conquered!");

end

System.out.println();

end

beginMain

// defines the goodies array

var XWing goodies = new XWing3;

// initialises the elements of the goodies array

superfor (var int i=0 to goodies.length-1)

begin

goodiesi = new XWing();

end

// defines the baddies array

var TieFighter baddies = new TieFighter3;

// initialises the elements of the baddies array

superfor (var int i=0 to baddies.length-1)

begin

baddiesi = new TieFighter();

end

battle(goodies,baddies);

endMain

end

Question 4.16.2: Compile and run this file to see the battle between the X-Wings and
the Tie Fighters unfold.

Question 4.16.3: If you look at the Java code for the XWing and TieFighter classes you
will notice that they are almost identical: They have the same methods and properties,
the only difference is that the XWing objects are initialized with a different value for their
shields and weapon properties to the TieFighter objects.

The next few questions will guide you through the process of using inheritance to elim-
inate this unnecessary duplication of code. A new class called SpaceShip will be created
and all of the code that is common to XWing and TieFighter will be moved into this class.
The XWing and TieFighter classes will then be modified so that they both inherit from
SpaceShip.

Question 4.16.4: The first step in this process is to create the outer shell of the SpaceShip
class, which you should now type in:

class SpaceShip

begin

end

Chapter 4: J.T.W. Tutorials 68

Question 4.16.5: Move the properties shields, weapon and dead out of the XWing and
TieFighter classes and into the SpaceShip class. You must change the privacy status of the
properties from private to protected. The protected modifier was invented as an interme-
diate level of privacy between public and private. Like private, it allows visibility to the
same class in which the method or property was defined, but unlike private it also allows
visibility to sub-classes of the class in which the method or property was defined.

Question 4.16.6: Move the three methods getWeapon, isDead and hit out of the XWing
and TieFighter classses and into the SpaceShip class. At this point, the XWing and
TieFighter classes should contain nothing but a constructor.

Question 4.16.7: Finally, add the extends keyword to the first line of the XWing and
TieFighter classes:

class XWing extends SpaceShip)

and

class TieFighter extends SpaceShip)

Question 4.16.8: Compile and run your program again, making sure that it produces the
same results now that it is using inheritance.

Question 4.16.9: The SpaceShip class is a super-class of both XWing and TieFighter
containing everything that X-Wings and Tie Fighters contain in common. Because the role
of the SpaceShip class is simply to hold these commonalities, we might choose to label the
class with the abstract keyword:

abstract class SpaceShip)

This prevents us from creating instances of the SpaceShip class. Without the abstract
modifier, we could happily create a new SpaceShip(), which would be an object that is not
an X-Wing, nor a Tie Fighter, but just a vague "space ship". If we consider this to be a
logical mistake then we can use abstract to prevent such calls to the SpaceShip constructor.
Change the class SpaceShip to be abstract and observe how the compiler will not accept
any lines of the form:

var SpaceShip s = new SpaceShip();) // compiler error

Remove the abstract keyword and notice how the compiler will then allow this line to
compile.

4.17 Tutorial 17 Arrays inheritance and polymorphism

Question 4.17.1: Study, compile and run the following code:

class AnimalTest

begin

private function void chatter(Animal[] a)

begin

superfor (var int i=0 to a.length-1)

begin

a[i].talk();

end

end

beginMain

Chapter 4: J.T.W. Tutorials 69

var Animal[] farm = { new Dog(), new Cow(), new Fish() };

var Animal[] ark = { new Dog(), new Dog(), new Cow(), new Cow(), new Fish(), new Fish() };

var Cow[] herd = { new Cow(), new Cow(), new Cow() };

chatter(farm);

chatter(ark);

chatter(herd);

endMain

end

class Animal

begin

method boolean breathesUnderwater()

begin

return false;

end

method boolean isPredator()

begin

return false;

end

method void talk()

begin

end

end

class Dog extends Animal

begin

method boolean isPredator()

begin

return true;

end

method void talk()

begin

System.out.println("Woof woof!");

end

end

Question 4.17.2: Write the following classes that subclass the Animal class above: Cow,
Cat, Fish, and Whale.

Question 4.17.3: Write the Shark class which extends Fish class. Override all necessary
methods. For the sake of this example and the code that follows, suppose that shark’s talk
method prints out "Chomp Chomp!".

Question 4.17.4: Run the AnimalTest class to make sure that all the methods work
correctly.

Chapter 4: J.T.W. Tutorials 70

Question 4.17.5: Rewrite the chatter method so that it never calls the talk methods and
instead uses a series of if (...) then ... statements and the instanceof operator to test the
run-time type of each object in the a array. Here is some code to get you started:

private function void chatter(Animal[] a)

begin

superfor (var int i=0 to a.length-1)

begin

if (a[i] instanceof Cow) then

begin

System.out.println("Moo!");

end

elseif (a[i] instanceof Cat) then

begin

System.out.println("Meow!");

end

/* other code goes here */

end

end

Note that the sub-classes must appear before super-classes in the above code, otherwise the
wrong message will be printed out for sub-classes.

Question 4.17.6: Why is the code from the last question not as good as calling each
animal’s talk method? In general polymorphism is preferable to run-time type inquiry.

4.18 Tutorial 18 Advanced J.T.W.

See Section 5.5 [How to build a collection of class files or an entire package], page 77, for
more information about compiling an entire package worth of classes.

4.18.1 Mapping J.T.W. to Java

Here is how to map from J.T.W. to Java:

function -> static
var -> nothing
classVar -> static
property -> nothing
method -> nothing
constructor-> nothing
begin -> {
end -> }
beginMain -> public static void main(String[] args) {
endMain -> }
and -> &&
or -> ||

then -> nothing
elseif -> else if

Here is an J.T.W. program:

class HelloWorld

Chapter 4: J.T.W. Tutorials 71

begin

beginMain

System.out.println("Hello, World!")

endMain

end

Here is the same J.T.W. program, after conversion to the Java language:

class HelloWorld

{

public static void main(String[] args)

{

System.out.println("Hello, World!")

}

}

Note that these J.T.W. keywords on the left hand side of the above diagram should
not map to their Java equivalents inside strings and comments. The transformation was
originally written to use the m4 language to map J.T.W. onto Java but this approach had
the disadvantage that keywords like begin and end inside strings were mapped to their Java
equivalents like so:

System.out.println("function");-> System.out.println("static");
System.out.println("classVar");-> System.out.println("static");
System.out.println("property");-> System.out.println("");
System.out.println("method");-> System.out.println("");
System.out.println("constructor");-> System.out.println("");
System.out.println("begin");-> System.out.println("{");
System.out.println("end");-> System.out.println("}");
System.out.println("beginMain");-> System.out.println("public static void main(String[] args)

{");

System.out.println("endMain");-> System.out.println("}");
System.out.println("and");-> System.out.println("&&");
System.out.println("or");-> System.out.println("||");
System.out.println("then");-> System.out.println("");
System.out.println("elseif");-> System.out.println("else if");

which is of course the wrong behaviour. A hack to get around this limitation is to break
apart the J.T.W. keywords like so:

System.out.println("be" + "gin");)

This problem can be fixed for good either by using Flex to compile J.T.W. into Java
or to use Emacs to do the same thing, only a little slower than what Flex can do. In the
end I chose GNU Emacs as the host for the preprocessor language J.T.W. because it is
free, libre and open source software, is adequate for my programming needs and is more
powerful than Flex or m4. To remedy this deficiency Emacs’ batch mode is used to do the
transformation from J.T.W. to Java. This implies that GNU Emacs must be present on the
client’s system to do the J.T.W. to Java mapping. Of course, there is no compulsion to use
Emacs as an editor, although there are a couple of advantages in doing this. Number one
is that J.T.W. keywords and comments have automatic syntax highlighting. And number
two is that Emacs can do correct automatic indentation of J.T.W. code.

Chapter 4: J.T.W. Tutorials 72

4.18.2 Piping the output of javac and java

Output from the executables javac and java have their standard output stream and standard
error stream piped into Emacs’ batch mode so that error messages like Foo.java:123 point
back to the correct file Foo.jtw:123 even if file inclusion (Chapter 3 [J.T.W. Proof of concept
#2 file inclusion], page 13) has been used. The programs grep and sed are also used as
pipes in the transformation process so they must be present on the client’s system.

4.18.3 Makefile for building *.jtw into *.java and running *.class
files

Here is the GNU Makefile for building *.java files and *.class files and running them.

.PRECIOUS:

.PRECIOUS: %.java %.class

JAVAC_FLAGS = -source 1.5 -Xlint:unchecked -Xlint:deprecation

JAVA_FLAGS = -enableassertions

SHELL = /bin/bash

%.java: %.jtw

@echo "* Stage 1 : Debugging $*.jtw and building $*.java file"

emacs --batch --eval "(setq *stump* \"$*\")" --load jtw-build-jtw.el --funcall doit

%.class: %.java

@echo "* Stage 2 : Debugging *.java and building *.class file(s)"

javac $(JAVAC_FLAGS) $$(find . -name "*.java") |& emacs --batch --eval "(setq *stump* \"$*\")" --load jtw-javac.el --funcall doit |& grep "input0-9:" - |& sed -e "s/input0-9:s//g" -

%.run: %.class

@echo "* Stage 3 : Running $*.class File"

java $(JAVA_FLAGS) $* |& emacs --batch --load jtw-java.el --funcall doit |& grep "input0-9*:" - |& sed -e "s/input0-9*://g" -

build: clean

The first line .PRECIOUS without any arguments clears the list of precious files, the list of
files not to delete during the build process.

73

5 Packages in J.T.W. and Java

The structure of a package mirrors the file system. For example you can have a package
named (for argument’s sake) pkg which corresponds to a folder pkg in your ~/jtw-tutorials
folder. You can have a sub-package called (for argument’s sake) inner which will reside in
the folder ~/jtw-tutorials/pkg/inner. Even though the second package resides inside of the
first package, they are still considered as separate packages.

There is a naming convention that I will not bother to use that helps to give
unique names to your packages. If you own a website like davinpearson.com (http://
davinpearson.com) you can name your packages like so: com/davinpearson/inner/inner2
where com/davinpearson where com.davinpearson.inner and com.davinpearson.inner.inner2
are separate packages. The fact that I own the domain name davinpearson.com ensures
that my package specification com/davinpearson is unique. The com comes first because
it is the actual domain name rather than the com extension that is unique. It is therefore
non-sensible to place any code directly in the com folder. So in effect we are piggy-backing
onto an existing standard i.e. Internet Domain Names. The same feature is exploited by
Websites which ask for your email address as your login, as email addresses are unique to
individual people.

5.1 Moving a class into a package

Consider a typical class:

class A

begin

property int data;

classVar int data2 = 666;

constructor A(int d)

begin

data = d;

end

method void meth1()

begin

System.out.println("meth1:" + data);

end

method void meth2()

begin

System.out.println("meth2:" + data);

end

function void func()

begin

System.out.println("func:" + data2);

end

http://davinpearson.com
http://davinpearson.com

Chapter 5: Packages in J.T.W. and Java 74

beginMain

var A a1 = new A(123);

a1.meth1(); // prints out "meth1:123"

var A a2 = new A(456);

a2.meth2(); // prints out "meth2:456"

A.func(); // prints out "func:666"

endMain

end

To move this class into a package called (for argument’s sake) pkg, you need to set the
class’s visibility status from none (i.e. package visibility) to public. Also each package
visible (i.e. no private or public or protected specification) class variable, function, method
and property needs to have its visibility status changed from package to public if you want
to be able to access these items from outside of the package. If you have more than one
class in the same file, they will have to be separated into separate files as you can only
have one public class per file. Also the name of the package must be declared via a package
specification like so package pkg; at the top of the file before any actual class or interface
definitions. Here is the same source file, ready to be put into a package:

package pkg;

public class A

begin

public property int data;

public classVar int data2 = 666;

public constructor A(int d)

begin

data = d;

end

public method void meth1()

begin

System.out.println("meth1:" + data);

end

public method void meth2()

begin

System.out.println("meth2:" + data);

end

public function void func()

begin

System.out.println("func:" + data2);

end

Chapter 5: Packages in J.T.W. and Java 75

beginMain

var A a1 = new A(123);

a1.meth1(); // prints out "meth1:123"

var A a2 = new A(456);

a2.meth2(); // prints out "meth2:456"

A.func(); // prints out "func:666"

endMain

end

Also the source file for the class needs to be moved into the folder ~/jtw-tutorials/pkg.
To run the class, you will need to invoke the Makefile command:

make clean pkg/A.run

5.2 Moving a class into a sub-package

Suppose you want to move a class A from no package (the folder ~/jtw-tutorials) to a
package called for argument’s sake pkg.inner, the steps from Section 5.1 [Moving a class
into a package], page 73, needs to be followed, the only difference being that the package
spec needs to be changed to package pkg.inner; and the file needs to be moved into the
folder pkg/inner. To run the class file you need to invoke the following Make command:

make clean pkg/inner/A.run.

Here is the class definition for the file ~/jtw-tutorials/pkg/inner/A.jtw:

package pkg.inner;

public class A

begin

public property int data;

public classVar int data2 = 666;

public constructor A(int d)

begin

data = d;

end

public method void meth1()

begin

System.out.println("meth1:" + data);

end

public method void meth2()

begin

System.out.println("meth2:" + data);

end

public function void func()

begin

System.out.println("func:" + data2);

Chapter 5: Packages in J.T.W. and Java 76

end

beginMain

var A a1 = new A(123);

a1.meth1(); // prints out "meth1:123"

var A a2 = new A(456);

a2.meth2(); // prints out "meth2:456"

A.func(); // prints out "func:666"

endMain

end

5.3 Importing a package

When referring to a class or interface in a package you need to specify the package name in
front of every class name and interface name in the package you want to access, like so, in
the main folder ~/jtw-tutorials (outside of any package):

class B

begin

beginMain

var pkg.A a1 = new pkg.A(123);

a1.meth1(); // prints out "meth1:123"

var pkg.A a2 = new pkg.A(456);

a2.meth2(); // prints out "meth2:456"

pkg.A.func(); // prints out "func:666"

endMain

end

To avoid having to qualify each class name and interface name with it’s package, you
need to use the import directive like so before the definition of the class like so:

import pkg.*;

class B

begin

beginMain

var A a1 = new A(123);

a1.meth1(); // prints out "meth1:123"

var A a2 = new A(456);

a2.meth2(); // prints out "meth2:456"

A.func(); // prints out "func:666"

endMain

end

5.4 Importing a package from another package

When referring to a class or interface in a package you need to specify the package name
in front of every class name or interface name in the package you want to access, like so, in
the folder ~/jtw-tutorials/pkg (i.e.\ in the pkg package).

package pkg;

Chapter 5: Packages in J.T.W. and Java 77

public class C

begin

beginMain

var pkg.inner.A a1 = new pkg.inner.A(123);

a1.meth1(); // prints out "meth1:123"

var pkg.inner.A a2 = new pkg.inner.A(456);

a2.meth2(); // prints out "meth2:456"

pkg.inner.A.func(); // prints out "func:666"

endMain

end

To avoid having to qualify each class name or interface name with it’s package, you need
to use the import directive like so after the package declaration but before the definition of
the class or interface like so:

package pkg;

import pkg.inner.*;

public class C

begin

beginMain

var A a1 = new A(123);

a1.meth1(); // prints out "meth1:123"

var A a2 = new A(456);

a2.meth2(); // prints out "meth2:456"

A.func(); // prints out "func:666"

endMain

end

5.5 How to build a collection of class files or an entire
package

When your class X uses another class Y in a different file then you need to add to the build
target of your Makefile which is initially like so:

build: clean

to what follows:
build: clean Y.java

If your class Y is in another package such as the class ~/jtw-tutorials/path/to/dir/Y.class
i.e. in the package path.to.dir then you need to add to the build target of your Makefile
like so:

build: clean path/to/dir/Y.java

This process should be repeated for every class that is called, directly or indirectly from
your main class X. By applying this process to every file in your package, you can build an
entire package, simply by invoking the Makefile command make build. To actually compile
and run the X class, let ~/jtw-tutorials/path2/to/dir/X.class be the location of the X class.
Then you need to invoke the following Makefile target:

Chapter 5: Packages in J.T.W. and Java 78

make build path2/to/dir/X.run

The build target calls the "clean" target which deletes all *.java and *.class files directly
or indirectly in the folder ~/jtw-tutorials. If you don’t do this then java might run an old
version of *.class files despite earlier errors in the build process. This is because the use of
pipes in building and executing *.class files hides the return values of the programs javac
and java.

5.6 How to invoke javadoc on a package

To invoke javadoc, you first need to issue the following command from the folder ~/jtw-
tutorials:

make build

See the Section 5.5 [How to build a collection of class files or an entire package], page 77, for
more information about setting up the build target. Then you need to issue the following
command from the folder ~/jtw-tutorials:

javadoc path3/to/pkg -d /path4/to/dir

where path3.to.pkg is the name of the package that you want to build and /path4/to/dir
is the desired location for your documentation files in *.html format.

79

Appendix A GNU Free Documentation License

GNU Free Documentation License Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

Appendix A: GNU Free Documentation License 80

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or

Appendix A: GNU Free Documentation License 81

distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission. B. List on the Title Page, as authors, one
or more persons or entities responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the
publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate
copyright notice for your modifications adjacent to the other copyright notices. F. Include,

Appendix A: GNU Free Documentation License 82

immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum
below. G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this
License. I. Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence. J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives
permission. K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
the Title of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein. L. Preserve all the
Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles. M. Delete any
section Entitled "Endorsements". Such a section may not be included in the Modified
Version. N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,

Appendix A: GNU Free Documentation License 83

and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete
all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

Appendix A: GNU Free Documentation License 84

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explic-
itly and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subse-

85

quently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant
sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible
for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

86

Appendix B Passwords for the answers to the
tutorials

Here are the passwords for the tutorials, which are located at the followingWebsite: http://
davin.50webs.com/J.T.W. They can be found by clicking on the link in Section 3 Answers
to the tutorials of the document.

No. Password:
1 policefish
2 chessweta
3 tallpencil
4 freshwhale
5 sneakermagic
6 kingpump
7 lakemarmite
8 nutriciouslamps
9 sadbutter
10 skyfresh
11 fivemagpies
12 phonesheds
13 dawnsweet
14 nightroads
15 blackscrews
16 snowfrog
17 tenflower

http://davin.50webs.com/J.T.W
http://davin.50webs.com/J.T.W

87

Index

‘
“Hello, World!” . 15

~
~/jtw-tutorials . 15

A
A common design pattern: private properties,

public constructor and public getters 43
A simple syntax for the main function. 1
A tarball to get you started . 15
About GNU Java Training Wheels 1

Accessing class variables and functions
from another class . 38

and construct from BASIC and C++ in J.T.W. . . . 1
Arrays . 28, 47, 70

Arrays of non-Object type, first
initialization syntax . 28

Arrays of non-Object type, second
initialization syntax . 29

Arrays of non-Object type, single-dimensional . . 28
Arrays of non-Object type, three-dimensional . . . 31
Arrays of non-Object type, two-dimensional 30
Arrays of Object type . 70

Arrays of Object type, first
initialization syntax . 48

Arrays of Object type, initialization 48

Arrays of Object type, second
initialization syntax . 48

Arrays of Object type, single-dimensional 47
Arrays of Object type, three-dimensional 50
Arrays of Object type, two-dimensional 49

B
BASIC style and and or constructs rather than

Java’s cumbersome && || constructs. 1
Beer drinking song . 24
Building a collection of classes 77
Building code that uses a class 15
Building code that uses a package 77

C
C++ style and and or constructs rather than

Java’s cumbersome && || constructs. 1
Calling existing methods of the String class 18
Character.toUpperCase . 17
chars, introducing . 17
Class variables from another class, accessing 38
classVar construct . 1
Collection of classes, building 77
Comments harvested by Javadoc 17
constructor construct . 1

Converting from functions to
methods and vice-versa . 54

D
Davin Pearson’s Personal Website
http://davin.50webs.com 15

Davin’s jtw-mode.el, a major mode for
editing *.jtw files . 15

Davin’s version of Emacs dlisp.tar.gz 15

Design pattern: private properties, public
constructor and public getters 43

dlisp.tar.gz, Davin’s version of GNU Emacs 15
do ... while loop . 24

E
elseif construct rather than else if 1
Encapsulation . 43

F
File inclusion in J.T.W. 2

First initialization syntax for arrays of
non-Object type . 28

First initialization syntax for
arrays of Objects . 48

for loop . 24
function construct . 1
Function name overloading . 30
Functions to methods and vice-versa 54
Functions, parameters and arguments 16

G
Getter and setter methods . 62

H
Hello, World! . 15

How to access class variables and functions
from another class . 38

http://davin.50webs.com

Index 88

I
Ignoring the return values of

functions and methods. 17
Inheritance . 60
Inheritance and removing duplication of code. . . 64
Installing Davin’s jtw-mode . 15

Installing Davin’s version of
Emacs dlisp.tar.gz . 15

instanceof keyword . 63
Internal details of the J.T.W. system 70
Introducing boolean arrays . 38
Introducing chars . 17
Introducing class variables . 27
Introducing non-Object arrays 28

Introducing single-dimensional
non-Object arrays . 28

Introducing the superfor construct 19
Introducing the System.out.print construct 19
Introducing the System.out.println construct . . . 19
Introducing while loops do ... while loops 24

J
J.T.W. -> Java mapping . 1
J.T.W. internal details . 70
Javadoc, harvesting of comments 17

jtw-mode.el Davin’s major mode for
editing *.jtw files . 15

L
Linked lists . 57

M
main function, a simple syntax for. 1

make build X.run to build and
run a class file. 15

Makefile for generating *.class files
from *.jtw files . 72

Mapping from *.jtw -> *.java 70

Mapping from class variables -> instance
variables (also known as properties) 42

Mapping from functions -> methods 42
Mapping from J.T.W. -> Java 1
method construct . 1
Methods to functions and vice-versa 54
Methods, overloading . 54
My first program . 15

N
Non-Object arrays, single-dimensional 28
Non-Object arrays, two-dimensional 30
null value for references . 46
NullPointerException . 46

O
Object arrays . 47
Object arrays, two-dimensional 49
Object superclass of all objects 63
or construct from BASIC and C++ in J.T.W. 1
Overloading methods . 54

P
Packages, building . 77
Packages, importing . 76
Packages, moving a class into a package 73

Pascal-style begin ... end construct versus the
C-style { ... } construct . 1

Piping the output of javac and java 72
Polymorphism . 69
Polymorphism versus run-time type inquiry 70

private properties, public constructor and public
getters, a common design pattern 43

Problematic J.T.W. constructs,
trouble-shooting . 1

property construct . 1
Property swapping . 54

R
Relationships between different classes. 50
Return values . 16
Run-time type inquiry versus Polymorphism 70

S
Second initialization syntax for

arrays of non-Objects . 29

Second initialization syntax for
arrays of Objects . 48

Setter and getter methods . 62

Setting up relationships between
different classes. 50

Single-dimensional arrays of Objects 47
superfor construct, Introducing 19
superfor looping construct . 3
superfor macro . 1
Swapping the properties of two objects 54
System.out.print construct, introducing 19
System.out.println construct, introducing 19
System.out.println(/* args */); 16

Index 89

T
The best of the four looping constructs superfor,

for, while and do ... while . 24

The Delphi/Pascal/JavaScript keyword var for
clearer local variables . 1

The difference between == and = 18

The Pascal/BASIC keyword then for
clearer if statements . 1

The toString method and its
usefulness in debugging. 64

The toString method. 46
then for clearer if statements . 1
Three-dimensional arrays of Objects 50
Three-dimensional non-Object arrays 31
toLowerCase() of the String class 19
toString method. 46
toUpperCase() of the String class 19

Trouble-shooting problematic
J.T.W. constructs . 1

Two-dimensional arrays of Objects 49
Two-dimensional non-Object arrays 30

V
var for clearer local variables . 1

W
while loop . 24

Why it is better to use polymorphism rather
than run-time type inquiry 70

Why the toString method is better than any other
method or property for debugging your code . . 47

Writing your own classes 62, 69
Writing your own methods . 47

Y
Yertle the Turtle . 57
Your first J.T.W. program . 15
Your first program . 15

	About GNU Java Training Wheels
	J.T.W. Proof of concept #1 A superfor macro
	Elisp source code for the superfor macro
	A bug in J.T.W. superfor

	J.T.W. Proof of concept #2 file inclusion
	J.T.W. Tutorials
	Tutorial 1 Your first program
	Tutorial 2 Introduction to programming in Java
	Tutorial 3 superfor loops and for loops
	Tutorial 4 Four looping constructs
	Tutorial 5 A beer drinking song
	Tutorial 6 Class variables
	Tutorial 7 Non-Object arrays
	Single-dimensional non-Object arrays
	Two dimensional non-Object arrays
	Three-dimensional non-Object arrays

	Tutorial 8 Accessing functions and class variables from another class
	Tutorial 9 Mapping class variables to instance variables (also known as properties) and functions to methods
	Elementary classes: using a single class for everything
	Improved classes: one object per class
	True O.O.P.: more than one object per class
	A common design pattern: private properties,public constructor and public getters
	Comparing strings
	The null value for references
	Why the toString method is better than any other method or

	Tutorial 10 Object arrays
	Single-dimensional arrays of Objects
	Two-dimensional arrays of Objects
	Three-dimensional arrays of Objects

	Tutorial 11 References to another class
	Tutorial 12 Overloading methods
	Tutorial 13 More about references
	Tutorial 14 Linked lists
	Tutorial 15 Introducing inheritance
	Basic Inheritance
	Run-time type inquiry
	The superclass of all objects

	Tutorial 16 More inheritance
	Tutorial 17 Arrays inheritance and polymorphism
	Tutorial 18 Advanced J.T.W.
	Mapping J.T.W. to Java
	Piping the output of javac and java
	Makefile for building *.jtw into *.java and running *.class files

	Packages in J.T.W. and Java
	Moving a class into a package
	Moving a class into a sub-package
	Importing a package
	Importing a package from another package
	How to build a collection of class files or an entire package
	How to invoke javadoc on a package

	GNU Free Documentation License
	Passwords for the answers to the tutorials
	Index

