
Disk Based Hashtables (DBH) 64 bit

Name

Disk Based Hashtables (DBH) 64 bit — Library to create and manage hash tables residing
on disk. Associations are made between keys and values so that for a given a key the
value can be found and loaded into memory quickly. Being disk based allows for large
and persistent hashes. 64 bit support allows for hashtables with sizes over 4 Gigabytes
on 32 bit systems. Quantified key generation allows for minimum access time on balanced
multidimensional trees.

Stability Level

Stable, unless otherwise indicated

Synopsis

#include <dbh.h>

#define DBH_CREATE

#define DBH_DATA (dbh)

#define DBH_DATA_SPACE (dbh)

#define DBH_ERASED_SPACE (dbh)

#define DBH_FILE_VERSION

#define DBH_FORMAT_SPACE (dbh)

#define DBH_KEY (dbh)

#define DBH_KEYLENGTH (dbh)

#define DBH_MAXIMUM_RECORD_SIZE (dbh)

#define DBH_PARALLEL_SAFE

#define DBH_PATH (dbh)

#define DBH_READ_ONLY

#define DBH_RECORDS (dbh)

#define DBH_RECORD_SIZE (dbh)

#define DBH_THREAD_SAFE

#define DBH_TOTAL_SPACE (dbh)

#define DBH_VERSION

void (*DBHashFunc) (DBHashTable *dbh);

void (*DBHashFunc2) (DBHashTable *dbh,

void *data);

struct DBHashTable;

#define FILE_POINTER

DBHashTable * dbh_new (const char *path,

unsigned char *key_length,

int flags);

DBHashTable * dbh_open (const char *path);

DBHashTable * dbh_open_ro (const char *path);

DBHashTable * dbh_create (const char *path,

unsigned char key_length);

int dbh_close (DBHashTable *dbh);

int dbh_destroy (DBHashTable *dbh);

int dbh_erase (DBHashTable *dbh);

int dbh_unerase (DBHashTable *dbh);

FILE_POINTER dbh_update (DBHashTable *dbh);

FILE_POINTER dbh_load (DBHashTable *dbh);

unsigned char dbh_load_address (DBHashTable *dbh,

FILE_POINTER currentseek);

FILE_POINTER dbh_load_child (DBHashTable *dbh,

unsigned char key_index);

FILE_POINTER dbh_load_parent (DBHashTable *dbh);

void dbh_set_data (DBHashTable *dbh,

void *data,

FILE_POINTER size);

void dbh_set_key (DBHashTable *dbh,

unsigned char *key);

void dbh_set_recordsize (DBHashTable *dbh,

int record_size);

int dbh_set_size (DBHashTable *dbh,

FILE_POINTER size);

int dbh_settempdir (DBHashTable *dbh,

char *temp_dir);

dbh_lock_t;

int dbh_clear_locks (DBHashTable *dbh);

int dbh_set_lock_timeout (int seconds);

int dbh_get_lock_timeout (void);

int dbh_set_parallel_lock_attempt_limit (DBHashTable *dbh,

int limit);

int dbh_set_parallel_lock_timeout (DBHashTable *dbh,

int seconds);

int dbh_lock_read (DBHashTable *dbh);

int dbh_unlock_read (DBHashTable *dbh);

int dbh_lock_write (DBHashTable *dbh);

int dbh_unlock_write (DBHashTable *dbh);

int dbh_mutex_lock (DBHashTable *dbh);

int dbh_mutex_unlock (DBHashTable *dbh);

FILE_POINTER dbh_find (DBHashTable *dbh,

int n);

int dbh_fanout (DBHashTable *dbh,

DBHashFunc operate,

unsigned char *key1,

unsigned char *key2,

unsigned char ignore_portion);

int dbh_sweep (DBHashTable *dbh,

DBHashFunc operate,

unsigned char *key1,

unsigned char *key2,

unsigned char ignore_portion);

int dbh_foreach (DBHashTable *dbh,

DBHashFunc2 operate,

void *data);

int dbh_foreach_fanout (DBHashTable *dbh,

DBHashFunc operate);

int dbh_foreach_sweep (DBHashTable *dbh,

DBHashFunc operate);

void dbh_exit_fanout (DBHashTable *dbh);

void dbh_exit_sweep (DBHashTable *dbh);

int dbh_prune (DBHashTable *dbh,

unsigned char *key,

unsigned char subtree_length);

int dbh_unprune (DBHashTable *dbh,

unsigned char *key,

unsigned char subtree_length);

void dbh_regen_fanout (DBHashTable **dbh);

void dbh_regen_sweep (DBHashTable **dbh);

void dbh_genkey (unsigned char *key,

unsigned char length,

unsigned int n);

void dbh_genkey0 (unsigned char *key,

unsigned char length,

unsigned int n);

void dbh_genkey2 (unsigned char *key,

unsigned char length,

unsigned int n);

void dbh_orderkey (unsigned char *key,

unsigned char length,

unsigned int n,

unsigned char base);

struct dbh_header_t;

int dbh_info (DBHashTable *dbh);

int dbh_writeheader (DBHashTable *dbh);

Description

A DBHashTable provides associations between keys and values which is optimized so that
given a key, the associated value can be found very quickly.

Note that only one hash record is loaded from disk to memory at any given moment
for a DBHashTable. Both keys and values should be copied into the DBHashTable record,
so they need not exist for the lifetime of the DBHashTable. This means that the use of
static strings and temporary strings (i.e. those created in buffers and those returned by
GTK+ widgets) should be copied with dbh_set_key() (see [dbh set key []], page 14) and
dbh_set_data() (see [dbh set data []], page 14) into the DBHashTable record before being
inserted.

You must be careful to ensure that copied key length matches the defined key length of
the DBHashTable, and also that the copied data does not exceed the maximum length of
the DBHashTable record (1024 bytes by default, and expandable by dbh_set_size() (see
[dbh set size []], page 15)). If the DBHashTable record length is to be variable, be sure to
set the appropriate length before each dbh_update() (see [dbh update []], page 12), with
dbh_set_recordsize() (see [dbh set recordsize []], page 14), otherwise the record length
need only be set before the first dbh_update() (see [dbh update []], page 12).

To create a DBHashTable, use dbh_new() (see [dbh new []], page 10).

A DBHashTable may be opened (either new or existing) in read-only mode, parallel-safe
mode or thread-safe mode.

To insert a key and value into a DBHashTable, use dbh_update() (see [dbh update []],
page 12). The DBHashTable will not be modified until this command is given. All changes
to the current DBHashTable record only reside in memory. dbh_update() (see [dbh update
[]], page 12) is necessary to commit the changes to the DBHashTable.

To lookup a value corresponding to a given key, use dbh_load() (see [dbh load []],
page 12).

To erase and unerase a key and value, use dbh_erase() (see [dbh erase []], page 12) and
dbh_unerase() (see [dbh unerase []], page 12).

To call a function for each key and value pair (using a sweep route) use dbh_foreach_

sweep() (see [dbh foreach sweep []], page 21) and dbh_sweep() (see [dbh sweep []],
page 20).

To call a function for each key and value pair (using a fanout route) use dbh_

foreach_fanout() (see [dbh foreach fanout []], page 21) and dbh_foreach_fanout() (see
[dbh foreach fanout []], page 21).

To destroy a DBHashTable use dbh_destroy() (see [dbh destroy []], page 11).

This is dbh version 2, incompatible with dbh version 1 files. The main difference between
the two version is the handling of file pointers. In version 1, file pointers were 32 bits in
length, while in version 2, file pointers are 64 bits in length. This allows for DBHashTables
with sizes greater than 2 GBytes.

‘Quantified numbers’ are an alternate way to view the set of ‘natural numbers’ {1, 2,
3, ...} where order is defined in two levels. In ‘natural numbers’ there is only one level of
order (defined by the > boolean operator). In ‘quantified numbers’ the first level of order
is defined by the ‘cuanta’ or quantity. The ‘cuanta’ is obtained by adding all the digits of
the ‘quantified number’. Thus, for example, 10022, 5, 32, and 11111 are all equal at the
first level of order since they all add up to 5. The second level or order may be obtained
in different manners. In functions dbh_genkey() (see [dbh genkey []], page 24) and dbh_

genkey2() (see [dbh genkey2 []], page 24) the corresponding order of the ‘natural numbers’
from which they are associated is not conserved.

In dbh_orderkey() (see [dbh orderkey []], page 25) the corresponding order of the ‘nat-
ural numbers’ from which they are associated is conserved, but at a price. The base, or
maximum value each digit may reach, must be defined. This effectively puts a limit on the
number of keys which may be generated for a given number of digits.

When a DBHashTable (see [struct DBHashTable], page 9) is constructed with ‘quantified’
keys, the maximum amount of disk access instructions generated to access any given record
is equal to the ‘cuanta’ of the quantified number represented by the key. This allows a
DBHashTable (see [struct DBHashTable], page 9) to be constructed with minimum access
time across all records.

Details

DBH CREATE

#define DBH_CREATE

Bit flag for dbh_new() (see [dbh new []], page 10) to create a new dbh file on disk,
overwriting any file with the same name and cleansing all locks.

DBH DATA()

#define DBH_DATA(dbh)

This macro returns a pointer to the current DBHashTable (see [struct DBHashTable],
page 9) data area.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH DATA SPACE()

#define DBH_DATA_SPACE(dbh)

This macro returns the amount of bytes taken up by valid data in the DBHashTable (see
[struct DBHashTable], page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH ERASED SPACE()

#define DBH_ERASED_SPACE(dbh)

This macro returns the amount of bytes taken up by erased data in the DBHashTable

(see [struct DBHashTable], page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH FILE VERSION

#define DBH_FILE_VERSION "DBH_2.0/64bit"

Disk Based Hashtables library file version compatibility

DBH FORMAT SPACE()

#define DBH_FORMAT_SPACE(dbh)

This macro returns the total amount of bytes taken up by the format of the DBHashTable
(see [struct DBHashTable], page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH KEY()

#define DBH_KEY(dbh)

This macro returns a pointer to the current DBHashTable (see [struct DBHashTable],
page 9) key area.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH KEYLENGTH()

#define DBH_KEYLENGTH(dbh)

This macro returns the keylenth in bytes associated to the DBHashTable (see [struct DB-
HashTable], page 9). The value is fixed when the DBHashTable (see [struct DBHashTable],
page 9) is created with dbh_new (see [dbh new []], page 10).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH MAXIMUM RECORD SIZE()

#define DBH_MAXIMUM_RECORD_SIZE(dbh)

This macro returns the maximum allocated space for data in the current DBHashTable
(see [struct DBHashTable], page 9) record.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH PARALLEL SAFE

#define DBH_PARALLEL_SAFE

Bit flag for dbh_new() (see [dbh new []], page 10) to use if more than one heavy weight
process will be accessing the same DBHashTable (see [struct DBHashTable], page 9) in write
mode. If no process will be writing to the DBHashTable (see [struct DBHashTable], page 9),
then DBH_READ_ONLY (see [DBH READ ONLY], page 7) is enough and faster since each pro-
cess will hold a separate memory allocation for the DBHashTable (see [struct DBHashTable],
page 9) pointer.

DBH PATH()

#define DBH_PATH(dbh)

This macro returns a pointer to a string containing the path to the current DBHashTable
(see [struct DBHashTable], page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH READ ONLY

#define DBH_READ_ONLY

Bit flag for dbh_new() (see [dbh new []], page 10) to open an existing dbh file on disk
in read only mode.

DBH RECORDS()

#define DBH_RECORDS(dbh)

This macro returns the number of records in the DBHashTable (see [struct DBHashTable],
page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH RECORD SIZE()

#define DBH_RECORD_SIZE(dbh)

This macro returns the size of the current record loaded in memory. If no record has
been loaded, then the return value is not defined.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH THREAD SAFE

#define DBH_THREAD_SAFE

Bit flag for dbh_new() (see [dbh new []], page 10) to use if more than one thread will
be accessing the same DBHashTable (see [struct DBHashTable], page 9) in write mode in
parallel. DBH function calls which may be racing each other in different threads should be
enclosed within a dbh_mutex_lock() (see [dbh mutex lock []], page 18) and dbh_mutex_

unlock() (see [dbh mutex unlock []], page 19). Each DBH table opened with the DBH_

THREAD_SAFE (see [DBH THREAD SAFE], page 8) attribute will have a specific mutex for
this function. If threads are to access the same DBHashTable (see [struct DBHashTable],
page 9) in read mode only, then DBH_READ_ONLY (see [DBH READ ONLY], page 7) and sep-
arate memory allocation for each thread’s DBHashTable (see [struct DBHashTable], page 9)
pointer is more than enough and faster.

When DBH_THREAD_SAFE (see [DBH THREAD SAFE], page 8) is specified, dbh_new()
(see [dbh new []], page 10) is automatically mutex locked until function completes. The
function dbh_close() (see [dbh close []], page 11) is also automatically locked until com-
pletion on tables opened with the DBH_THREAD_SAFE (see [DBH THREAD SAFE], page 8)
attribute.

DBH TOTAL SPACE()

#define DBH_TOTAL_SPACE(dbh)

This macro returns the total amount of bytes taken up by the DBHashTable (see [struct
DBHashTable], page 9).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBH VERSION

#define DBH_VERSION "5.0.15"

Disk Based Hashtables library version

DBHashFunc ()

void (*DBHashFunc) (DBHashTable *dbh);

Pointer to function to apply during dbh_sweep() (see [dbh sweep []], page 20), dbh_
fanout() (see [dbh fanout []], page 19), dbh_foreach_sweep() (see [dbh foreach sweep []],
page 21) and dbh_foreach_fanout() (see [dbh foreach fanout []], page 21).

This function will be applied to all data records involved in the sweep or fanout process

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *)

DBHashFunc2 ()

void (*DBHashFunc2) (DBHashTable *dbh,

void *data);

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable
(see [struct DBHashTable], page 9) *) Pointer to function to apply during
dbh_sweep() (see [dbh sweep []], page 20), dbh_fanout() (see [dbh fanout
[]], page 19), dbh_foreach_sweep() (see [dbh foreach sweep []], page 21) and
dbh_foreach_fanout() (see [dbh foreach fanout []], page 21).

data : pointer to other data to be passed to function

This function will be applied to all data records involved in the sweep or fanout
process

struct DBHashTable

struct DBHashTable {

unsigned char branches;

FILE_POINTER bytes_userdata;

unsigned char *key;

void *data;

int fd;

dbh_header_t *head_info;

char *path;

};

DBHashTable (see [struct DBHashTable], page 9) is a data structure containing the
record information for an open DBHashTable (see [struct DBHashTable], page 9) file.

unsigned [Cross reference to non-existant ID “char”] branches;
Maximum toplevel branches

FILE_POINTER (see [FILE POINTER], page 10) bytes_userdata;
size of data record

unsigned [Cross reference to non-existant ID “char”] *key;
access key

[Cross reference to non-existant ID “void”] *data;
record data pointer

[Cross reference to non-existant ID “int”] fd;
file descriptor

dbh_header_t (see [struct dbh header t], page 25) *head_info;
nonvolatile header information

[Cross reference to non-existant ID “char”] *path;
file path

FILE POINTER

#define FILE_POINTER

Architecture independent 64 bit integer type

dbh new ()

DBHashTable * dbh_new (const char *path,

unsigned char *key_length,

int flags);

Open or create an existing DBH table. Flag is bitwise or of the following: DBH_CREATE
(see [DBH CREATE], page 5), DBH_READ_ONLY (see [DBH READ ONLY], page 7),
DBH_THREAD_SAFE (see [DBH THREAD SAFE], page 8), DBH_PARALLEL_SAFE (see
[DBH PARALLEL SAFE], page 7). (since 4.7.6)

path : Path on disk where DBHashTable resides.

key_length :
A pointer to store the length of the key to access the DBHashTable.

flags : Bitwise or of DBH CREATE, DBH READ ONLY, DBH THREAD SAFE,
DBH PARALLEL SAFE

Returns : A pointer to the newly opened DBHashTable, or NULL if it fails.

dbh open ()

DBHashTable * dbh_open (const char *path);

Warning

‘dbh_open’ is deprecated and should not be used in newly-written code. Use
dbh_new() (see [dbh new []], page 10) instead

Open an existing hash in read-write mode.

path : Path on disk where DBHashTable resides.

Returns : A pointer to the newly opened DBHashTable (see [struct DBHashTable], page 9),
or NULL if it fails.

dbh open ro ()

DBHashTable * dbh_open_ro (const char *path);

Warning

‘dbh_open_ro’ is deprecated and should not be used in newly-written code. Use
dbh_new() (see [dbh new []], page 10) instead

Open an existing hash in read-only mode.

path : Path on disk where DBHashTable resides.

Returns : A pointer to the newly opened read-only DBHashTable, or NULL if it fails.

dbh create ()

DBHashTable * dbh_create (const char *path,

unsigned char key_length);

Warning

‘dbh_create’ is deprecated and should not be used in newly-written code. Use
dbh_new() (see [dbh new []], page 10) instead

Create a new hash file (overwriting old version). Creates and opens for writing a new
DBHashTable (see [struct DBHashTable], page 9). This function will overwrite any file
with the specified path, including any previous DBH file. The key_length is fixed. If
you want variable length, use a g hash table to associate quantified keys generated by
[Cross reference to non-existant ID “genkey”], and create an extra DBHashTable to save
the g hash. Quantified keys assure that large DBHashes are spread out optimally.

path : Path on disk where DBHashTable will reside.

key_length :
The length of the key to access the DBHashTable.

Returns : A pointer to the newly created and opened DBHashTable (see [struct DB-
HashTable], page 9), or NULL if it fails.

dbh close ()

int dbh_close (DBHashTable *dbh);

Close hash file (thus flushing io buffer).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, 1 otherwise.

dbh destroy ()

int dbh_destroy (DBHashTable *dbh);

Close an open DBHashTable and erase file from disk. Convenience function that does a
close and rm.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh erase ()

int dbh_erase (DBHashTable *dbh);

Mark the record currently loaded into memory as erased. If no record is currently loaded,
behaviour is undefined.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, 1 otherwise.

dbh unerase ()

int dbh_unerase (DBHashTable *dbh);

This is the opposite of dbh_erase() (see [dbh erase []], page 12). Mark the record
currently loaded into memory as unerased. If no record is currently loaded, behaviour is
undefined.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, 1 otherwise.

dbh update ()

FILE_POINTER dbh_update (DBHashTable *dbh);

Update the current record in memory to the disk based hash. Update function will
update erased records as well as unerased records, but if an erased record is updated, it is
automatically unerased.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, byte offset of loaded record otherwise.

dbh load ()

FILE_POINTER dbh_load (DBHashTable *dbh);

Load a record using the currently set key. This function will also load erased values,
except that it will return 0.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, byte offset of loaded record otherwise.

dbh load address ()

unsigned char dbh_load_address (DBHashTable *dbh,

FILE_POINTER currentseek);

Load a record from hash table directly from byte offset currentseek

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

currentseek :
A byte offset.

Returns : 0 on error, number of branches otherwise.

dbh load child ()

FILE_POINTER dbh_load_child (DBHashTable *dbh,

unsigned char key_index);

Load the first child of the currently loaded record, on branch identified by key_index.
Since the number of childs (or branches) of each record is variable, this may be tricky. Top
level records have DBH_KEYLENGTH (see [DBH KEYLENGTH[]], page 6) branches. Lower
level records have less. Each byte of a key represents a branch on top level records.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

key_index :
branch number on which to return the child.

Returns : 0 on error, byte offset of loaded record otherwise.

dbh load parent ()

FILE_POINTER dbh_load_parent (DBHashTable *dbh);

Load the parent of the currently loaded record.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 on error, byte offset of loaded record otherwise.

dbh set data ()

void dbh_set_data (DBHashTable *dbh,

void *data,

FILE_POINTER size);

This function copies the user data into the current DBHashTable (see [struct
DBHashTable], page 9) record and along with function dbh_set_key() (see [dbh set key
[]], page 14), makes the current DBHashTable (see [struct DBHashTable], page 9) record
ready for the dbh_update() (see [dbh update []], page 12) function to commit to the
actual DBHashTable (see [struct DBHashTable], page 9) on disk.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

data : Pointer to the data to copy to the current DBHashTable (see [struct DB-
HashTable], page 9) record

size : The amount of bytes to copy to the current DBHashTable (see [struct DB-
HashTable], page 9) record

dbh set key ()

void dbh_set_key (DBHashTable *dbh,

unsigned char *key);

This function sets the key of the current DBHashTable record.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

key : The key to set as the current DBHashTable record key.

dbh set recordsize ()

void dbh_set_recordsize (DBHashTable *dbh,

int record_size);

This sets the recordsize of the the data in the current DBHashTable (see [struct
DBHashTable], page 9) record. It is called implicitly by calling dbh_set_data() (see

[dbh set data []], page 14). It is very important to call this function. Unpredictable results
will follow if record size is not set. DBHashTable (see [struct DBHashTable], page 9)
records are variable in length, so use this function at least once if you are planning to use
fixed length records. This function is not needed if dbh_set_data() (see [dbh set data []],
page 14) is used to set the record data.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

record_size :
The amount of bytes in the current DBHashTable (see [struct DBHashTable],
page 9) record.

dbh set size ()

int dbh_set_size (DBHashTable *dbh,

FILE_POINTER size);

Defines the maximum amount of memory to be allocated to the DBHashTable (see [struct
DBHashTable], page 9) records. This is nonvolatile information which need to be set only
once. The default is 1Kbyte.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

size : size in bytes.

Returns : 0 on error, 1 otherwise.

dbh settempdir ()

int dbh_settempdir (DBHashTable *dbh,

char *temp_dir);

Sets the temporary directory to be used by dbh_regen_sweep() (see [dbh regen sweep
[]], page 23) or dbh_regen_fanout() (see [dbh regen fanout []], page 23). It is usually
best to set temporary directory on the same filesystem device. The default value for the
temporary directory is the directory where dbh is located. To reset to default value, send
NULL as the temp_dir

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

temp_dir :
path to temporary directory to use.

Returns : 0 if error, 1 otherwise

dbh lock t

typedef struct {

pid_t write_lock;

int write_lock_count;

int read_lock_count;

} dbh_lock_t;

[Cross reference to non-existant ID “pid-t”] write_lock;
PID of process holding the write lock or zero.

[Cross reference to non-existant ID “int”] write_lock_count;
Number of write locks the PID hold (write locks are recursive).

[Cross reference to non-existant ID “int”] read_lock_count;
Number of read locks on DBH table.

dbh clear locks ()

int dbh_clear_locks (DBHashTable *dbh);

Returns: 0 if error, 1 otherwise

Clear dbh file locks associated to DBHashTable (see [struct DBHashTable], page 9) Use
this function to clean up persistent file locks

(since 4.7.6)

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

dbh set lock timeout ()

int dbh_set_lock_timeout (int seconds);

Sets the default time for obtaining a read/write lock in parallel safe mode. The default
value is zero, which means there is no timeout. If there is no timeout, file locking will
block until lock is secured. Locks may persist beyond program life and may be stale if
program crashed before unlocking was performed. Does not affect currently open dbh files.
If the value for a currently open dbh file is to be modified, use dbh_set_parallel_lock_

timeout() (see [dbh set parallel lock timeout []], page 17) as well.

seconds : Timeout default for obtaining a read/write lock in parallel safe mode.

Returns : 0 if error, 1 otherwise

dbh get lock timeout ()

int dbh_get_lock_timeout (void);

Gets the default time for obtaining a read/write lock in parallel safe mode. The default
value is zero, which means there is no timeout. If there is no timeout, file locking will block
until lock is secured. Locks may persist beyond program life and may be stale if program
crashed before unlocking was performed.

Returns : the default timeout in seconds to secure a read/write lock in parallel safe mode.

dbh set parallel lock attempt limit ()

int dbh_set_parallel_lock_attempt_limit (DBHashTable *dbh,

int limit);

Warning

‘dbh_set_parallel_lock_attempt_limit’ is deprecated and should not be
used in newly-written code. Use dbh_set_parallel_lock_timeout() (see
[dbh set parallel lock timeout []], page 17) instead. As of 5.0.10, this function
is inoperative.

Sets the limit on the attempts to lock a parallel protected dbh file lock before considering
the lock to be stale. Stale locks may occur when the calling program crashes while the lock is
set in either read or write mode. Lock will persist in shared memory beyond program crash.
Lock may be removed manually, or a lock attempt limit on the number of tries specified
to remove the lock automatically. Each lock attempt limit is equal to 1/10th of a second
(1E+08 nanoseconds). If limit is set to zero, then lock attempts will continue indefinitely.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

limit : Number of attempts to lock a parallel protected file lock before removing lock.

Returns : 0 if error, 1 otherwise

dbh set parallel lock timeout ()

int dbh_set_parallel_lock_timeout (DBHashTable *dbh,

int seconds);

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

seconds : Number of second to try to lock a parallel protected file before failing. A value
of zero means function will block until lock is obtained.

Returns : 0 if error, 1 otherwise

dbh lock read ()

int dbh_lock_read (DBHashTable *dbh);

Attempts to get a read lock on the dbh file. A file may have any number of
readlocks as long as no write lock is set. If dbh_set_parallel_lock_timeout() (see
[dbh set parallel lock timeout []], page 17) is set to zero (that’s the default) this function
will block until lock is secured.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh unlock read ()

int dbh_unlock_read (DBHashTable *dbh);

Releases a read lock on the dbh file.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh lock write ()

int dbh_lock_write (DBHashTable *dbh);

Attempts to get a write lock on the dbh file. A file can only have one write lock, and when
write lock is set, no read locks may be secured. If dbh_set_parallel_lock_timeout() (see
[dbh set parallel lock timeout []], page 17) is set to zero (that’s the default) this function
will block until lock is secured.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh unlock write ()

int dbh_unlock_write (DBHashTable *dbh);

Releases a write lock on the dbh file.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh mutex lock ()

int dbh_mutex_lock (DBHashTable *dbh);

Lock the DBHashTable mutex. This is only valid if table was opened with the
DBH THREAD SAFE flag, Otherwise the function does nothing.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh mutex unlock ()

int dbh_mutex_unlock (DBHashTable *dbh);

Unlock the DBHashTable mutex. This is only valid if table was opened with the
DBH THREAD SAFE flag, Otherwise the function does nothing.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh find ()

FILE_POINTER dbh_find (DBHashTable *dbh,

int n);

Find the top level subtree FILE POINTER for the currently loaded record, but ignoring
the last n branches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

n : Number of branches to ignore on top record.

Returns : 0 on error, byte offset of loaded record otherwise.

dbh fanout ()

int dbh_fanout (DBHashTable *dbh,

DBHashFunc operate,

unsigned char *key1,

unsigned char *key2,

unsigned char ignore_portion);

Apply a function to subtree members of the hash, following a fanout trajectory (hori-
zontally through records).

In order for dbh_fanout() (see [dbh fanout []], page 19) to be extremely fast, you
should prepare the DBHashTable (see [struct DBHashTable], page 9) for the trajectory with

dbh_regen_fanout() (see [dbh regen fanout []], page 23) first. This allows for extremely
efficient use of hardware and operating system caches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

operate : The function to apply to each selected member of the DBHashTable (see [struct
DBHashTable], page 9)

key1 : The key from which to start the fanout or NULL if you don’t care. Make sure
it is a top level node of a subtree with dbh_find() (see [dbh find []], page 19)
first.

key2 : The key which will trigger an exit condition from the sweep, or NULL if don’t
care.

ignore_portion :
The ignored trailing bytes of key1 which will define the magnitud of the subtree
to be sweeped, or zero if don’t care.

Returns : 0 on error, 1 otherwise.

dbh sweep ()

int dbh_sweep (DBHashTable *dbh,

DBHashFunc operate,

unsigned char *key1,

unsigned char *key2,

unsigned char ignore_portion);

Apply a function to subtree members of the hash, following a sweep trajectory (vertically
through branches).

In order for dbh_sweep() (see [dbh sweep []], page 20) to be extremely fast, you should
prepare the DBHashTable (see [struct DBHashTable], page 9) for the trajectory with dbh_

regen_sweep() (see [dbh regen sweep []], page 23) first. This allows for extremely efficient
use of hardware and operating system caches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

operate : The function to apply to each selected member of the DBHashTable (see [struct
DBHashTable], page 9)

key1 : The key from which to start the sweep or NULL if you don’t care. Make sure
it is a top level node of a subtree with dbh_find() (see [dbh find []], page 19)
first.

key2 : The key which will trigger an exit condition from the sweep, or NULL if don’t
care.

ignore_portion :
The ignored trailing bytes of key1 which will define the magnitud of the subtree
to be sweeped, or zero if don’t care.

Returns : 0 on error, 1 otherwise.

dbh foreach ()

int dbh_foreach (DBHashTable *dbh,

DBHashFunc2 operate,

void *data);

Apply a function to each member of the hash, following a sweep trajectory. Sweep is done
by traversing the DBHashTable (see [struct DBHashTable], page 9) in a vertical direction
through all branches.

In order for dbh_foreach_sweep() (see [dbh foreach sweep []], page 21) to be extremely
fast, you should prepare the DBHashTable (see [struct DBHashTable], page 9) for the tra-
jectory with dbh_regen_sweep() (see [dbh regen sweep []], page 23) first. This allows for
extremely efficient use of hardware and operating system caches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

operate : A DBHashFunc2() (see [DBHashFunc2 []], page 9) to execute on all records

data : pointer to data passed to DBHashFunc2() (see [DBHashFunc2 []], page 9)

Returns : 0 on error, 1 otherwise.

dbh foreach fanout ()

int dbh_foreach_fanout (DBHashTable *dbh,

DBHashFunc operate);

Apply a function to each member of the hash, following a fanout trajectory (horizontally
through records). dbh_foreach_fanout() (see [dbh foreach fanout []], page 21) is done by
traversing the DBHashTable (see [struct DBHashTable], page 9) in a horizontal direction
through all records.

In order for dbh_foreach_fanout() (see [dbh foreach fanout []], page 21) to be ex-
tremely fast, you should prepare the DBHashTable (see [struct DBHashTable], page 9) for
the trajectory with dbh_regen_fanout() (see [dbh regen fanout []], page 23) first. This
allows for extremely efficient use of hardware and operating system caches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

operate : A DBHashFunc() (see [DBHashFunc []], page 8) to execute on all records

Returns : 0 on error, 1 otherwise.

dbh foreach sweep ()

int dbh_foreach_sweep (DBHashTable *dbh,

DBHashFunc operate);

Apply a function to each member of the hash, following a sweep trajectory. Sweep is done
by traversing the DBHashTable (see [struct DBHashTable], page 9) in a vertical direction
through all branches.

In order for dbh_foreach_sweep() (see [dbh foreach sweep []], page 21) to be extremely
fast, you should prepare the DBHashTable (see [struct DBHashTable], page 9) for the tra-
jectory with dbh_regen_sweep() (see [dbh regen sweep []], page 23) first. This allows for
extremely efficient use of hardware and operating system caches.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

operate : A DBHashFunc() (see [DBHashFunc []], page 8) to execute on all records

Returns : 0 on error, 1 otherwise.

dbh exit fanout ()

void dbh_exit_fanout (DBHashTable *dbh);

Calling this function from within a DBHashFunc (see [DBHashFunc []], page 8) will cause
an exit of a currently running fanout.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

dbh exit sweep ()

void dbh_exit_sweep (DBHashTable *dbh);

Calling this function from within a DBHashFunc (see [DBHashFunc []], page 8) will cause
an exit of a currently running sweep.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

dbh prune ()

int dbh_prune (DBHashTable *dbh,

unsigned char *key,

unsigned char subtree_length);

Erases a whole subtree from the record currently loaded into memory. Records are
not really removed fisically, but rather marked erased so they may be recovered (if not
overwritten later on). Records are permanently removed after DBHashTable (see [struct
DBHashTable], page 9) is reconstructed with dbh_regen_sweep() (see [dbh regen sweep
[]], page 23) or dbh_regen_fanout() (see [dbh regen fanout []], page 23).

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

key : key of top level record of subtree to erase.

subtree_length :
number of branches to erase.

Returns : 0 on error, 1 otherwise.

dbh unprune ()

int dbh_unprune (DBHashTable *dbh,

unsigned char *key,

unsigned char subtree_length);

Does the opposite of dbh_prune() (see [dbh prune []], page 22), marking entire subtree
as unerased. May fail to work if records have been overwritten since the dbh_prune() (see
[dbh prune []], page 22) instruction was issued.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

key : key of top level record of subtree to erase.

subtree_length :
number of branches to erase.

Returns : 0 on error, 1 otherwise.

dbh regen fanout ()

void dbh_regen_fanout (DBHashTable **dbh);

Regenerate the DBHashTable (see [struct DBHashTable], page 9), eliminating erased
records and optimizing disk access and speed for fanout access. This is done by creat-
ing a new DBHashTable (see [struct DBHashTable], page 9) where the physical structure
matches the logical fanout structure. The temporary directory where the new DBHashTable

(see [struct DBHashTable], page 9) is created may be set with dbh_settempdir() (see
[dbh settempdir []], page 15). Current DBHashTable (see [struct DBHashTable], page 9)
is closed before removed. New DBHashTable (see [struct DBHashTable], page 9) is opened
after renamed.

dbh : A pointer to a DBHashTable (see [struct DBHashTable], page 9) pointer
(DBHashTable (see [struct DBHashTable], page 9) *).

Returns : void.

dbh regen sweep ()

void dbh_regen_sweep (DBHashTable **dbh);

Regenerate the DBHashTable (see [struct DBHashTable], page 9), eliminating erased
records and optimizing disk access and speed for sweep access. This is done by creating a new
DBHashTable (see [struct DBHashTable], page 9) where the physical structure matches the
logical sweep structure. The temporary directory where the new DBHashTable (see [struct
DBHashTable], page 9) is created may be set with dbh_settempdir() (see [dbh settempdir
[]], page 15). Current DBHashTable (see [struct DBHashTable], page 9) is closed before
removed. New DBHashTable (see [struct DBHashTable], page 9) is opened after renamed.

dbh : A pointer to a DBHashTable (see [struct DBHashTable], page 9) pointer
(DBHashTable (see [struct DBHashTable], page 9) *).

Returns : void.

dbh genkey ()

void dbh_genkey (unsigned char *key,

unsigned char length,

unsigned int n);

Obtain a key from a secuential series of natural numbers (positive integers without zero)
which does not conserve the order of the natural numbers, but which are optimized for
construction of a balanced hash tree. These keys are expressed in quantified numbers.
Digits are offset to the 0 symbol (+48).

key : The address where to put the generated key

length : The key length

n : The natural number from which to generate the key

dbh genkey0 ()

void dbh_genkey0 (unsigned char *key,

unsigned char length,

unsigned int n);

Obtain a key from a secuential series of natural numbers (positive integers without zero)
which does not conserve the order of the natural numbers, but which are optimized for
construction of a balanced hash tree. These keys are expressed in quantified numbers.
Digits are not offset.

key : The address where to put the generated key

length : The key length

n : The natural number from which to generate the key

dbh genkey2 ()

void dbh_genkey2 (unsigned char *key,

unsigned char length,

unsigned int n);

Obtain a key from a secuential series of natural numbers (positive integers without zero)
which does not conserve the order of the natural numbers, but which are optimized for
construction of a balanced hash tree. These keys are expressed in quantified numbers.
Digits are offset to the A symbol (+65).

key : The address where to put the generated key

length : The key length

n : The natural number from which to generate the key

dbh orderkey ()

void dbh_orderkey (unsigned char *key,

unsigned char length,

unsigned int n,

unsigned char base);

Obtain a key from a secuential series of natural numbers (positive integers without zero)
which conserves the order of the natural numbers. This function generates a key that
belongs to a finite subset of the quantified numbers, but which preserves the order of the
natural numbers (up to the supreme, of course)

key : The address where to put the generated key

length : The key length

n : The natural number for which to generate the key

base : The number system base to use. This will equal the maximum number of nodes
per branch. This —along with the keylength— will also define a maximum
number of records for the DBHashTable

struct dbh header t

struct dbh_header_t {

unsigned char n_limit;

unsigned char user_chars[5];

FILE_POINTER bof;

FILE_POINTER erased_space;

FILE_POINTER data_space;

FILE_POINTER total_space;

FILE_POINTER records;

FILE_POINTER record_length;

FILE_POINTER user_filepointer[6];

char version[16];

char copyright[128];

};

dbh_header_t (see [struct dbh header t], page 25) is the structural information written
at the first 256 bytes of a DBHashTable (see [struct DBHashTable], page 9) file.

unsigned [Cross reference to non-existant ID “char”] n_limit;
Maximum toplevel branches

unsigned [Cross reference to non-existant ID “char”] user_chars[5];
Five unsigned chars available to user

FILE_POINTER (see [FILE POINTER], page 10) bof;
File pointer to root of tree

FILE_POINTER (see [FILE POINTER], page 10) erased_space;
Amount of bytes marked as erased

FILE_POINTER (see [FILE POINTER], page 10) data_space;
Amount of bytes ocuppied by data

FILE_POINTER (see [FILE POINTER], page 10) total_space;
Amount of bytes ocuppied by data and format

FILE_POINTER (see [FILE POINTER], page 10) records;
Number of records

FILE_POINTER (see [FILE POINTER], page 10) record_length;
Maximum record length

FILE_POINTER (see [FILE POINTER], page 10) user_filepointer[6];
Six 64-bit filepointers available to user

[Cross reference to non-existant ID “char”] version[16];
DBHashTable version compatibility information

[Cross reference to non-existant ID “char”] copyright[128];
DBH sourcecode distribution copyright and download information

dbh info ()

int dbh_info (DBHashTable *dbh);

Prints header information to stdout.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

dbh writeheader ()

int dbh_writeheader (DBHashTable *dbh);

Write out the DBHashTable header information. It is advisable to call this function
inmediately after creation of a new DBHashTable to force a buffer flush.

dbh : A DBHashTable (see [struct DBHashTable], page 9) pointer (DBHashTable (see
[struct DBHashTable], page 9) *).

Returns : 0 if error, 1 otherwise

See Also

[Cross reference to non-existant ID “GHashTables”]

