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Abstract

This paper describes the design of Disk Based Hash Tables: n—dimen-
sional self-indexed data tables. The construction of quantified numbers
and their relation to the natural numbers is outlined. Application of
quantified numbers to multidimensional data record keys is explained.
Finally, quantum mechanics electron orbital energy levels are shown in
quantified numbers with associated diagrams.

Introduction

What would be the difference between a data base application, such as MySQ]I,
and Disk Based Hash Tables (DBH)?

Databases, such as MySQL and MySQL-lite, organize data in tables, which
are two dimensional objects with rows and columns[5]. Each row contains a
unique access key and a data record. The data record need not be unique, and
contains one or more fields. Records are accessed by moving up or down the
table until the record index key matches that which was requested. On large
tables, this is quite inefficient, so databases rely on an additional index file. The
index is a smaller table with a single field which stores the offset to the actual
record in the larger table. If the index is small, the entire table will reside in
memory. If the index is not small enough to fit in memory, the gain achieved
from using an index is relative.

DBH[8, 9] evolved from the inefficiency of conventional database tables to
deal with the output of real time air pollution data in the metropolitan area of
Mexico City on limited hardware[2]. In this situation, the record size was of sec-
ondary importance with regard to the number of records involved. Conventional
index files could not speed up the access time to acceptable levels. To solve this
problem, the topological homeomorphism|[3] [4] which exists between R? and R"
was used to solve the problem in a more efficient manner. Any two dimensional
table has a n dimensional topological equivalent. This is fundamental to DBH
efficiency. In essence, any two dimensional table can be optimized into a binary
tree[6]. Taking this concept one step further, the same table can be structured



into an n—ary tree. Thus, if a binary tree lies in two dimensions, an n—ary tree
would be the n dimensional analog.

Thus, a DBH file is an n—dimensional table or n—ary tree. To avoid the disk
head moving back in forth over the mechanical magnetic medium, the index is
incorporated into the file format itself. In this fashion, the access key is split
up into the desired dimensions of the table, and the search converges rapidly by
moving through the pertinent dimensions.

The initial design of the multidimensional tables[10] solved several problems
which arise with large tables, minimizing disk storage space without resorting
to compression techniques. When a record has a large number of fields but
only a subset of these contain actual data, ordinary tables tend to get crammed
with useless bytes. Optimization based on compression techniques may depend
on the randomness of such events. Lower level variable records proved more
efficient in the development of applications targeted at the pollution problem in
Mexico City[7].

The design of Disk Based Hash Tables

The following considerations were made in the design of DBH.

1. The dimensionality of each node should be variable, but less than or equal
to the root node.

2. Each node shall define a n-table of dimensionality less than or equal to
the root node.

3. Nodes shall not carry redundant dimensions.
4. The data record size on each node should be variable.

5. Functionality for creation, modification or deletion of arbitrary nodes
should be present.

6. Repetitive commands (foreach) must be supported for the main tree or
any subtree.

The design goals were acomplished with DBH by varying the dimension of the
node according to the depth level. The root node has n dimensions, with a
pointer in each dimensional direction. All nodes which lie in the path of the
first dimension have at most one dimension. Those on the second dimension
path may have up to two dimensions and so forth up the the nth dimension.
Each subsequent node is recursively similar. With this design, inferior nodes
need only the part of the access key which differs from those nodes on the
superior level.

Each access key is separated into n parts, one part for each dimension. For
example, if an hour key is to be divided into nine dimensions, and the maximum
key is defined at ten years, the key may be expressed as a tetradecimal number.
This would give 111121230 for ten years (24 x 365.24 x 10 = 876609).



Each of the digits 111121230 represent a value of the respective dimension,
each symbol may only have one of four values. Thus, the maximum read op-
erations in each dimension is 4. The worst case scenario for 876609 records
would be 36 reads. This contrasts widely from the worst case scenario for a two
dimensional table, where the reads could reach 876609. A speedup of 2.4E + 04.

With n—dimensional tables, the worst case scenario for read operations is
given by the function f(j) = jm'/7, which has a minimum at j = Inm. Thus for
2 million records, j ~ 14. While for 7 billion records (current world population),
j =~ 25. DBH is capable of handling up to 256 dimensions. The disk space in
bytes which is occupied by the multidimensional formating scheme of DBH on
a 64 bit system can be obtained with the following formula, where V is the
maximum value on each key digit:

8Y [G+1-n)(Vr—vrh.

The formation of keys by changing the base of a number from decimal to a
more appropriate base works fine as long as the number of records is limited.
But what happens if the number of records grows past the limit? This is where
keys based upon quantified numbers are of utmost importance.

Quantified numbers applied to data retrieval

For the past decades, one of the bottlenecks which holds back the time a compu-
tational process takes to complete are the clock cycles taken to get the data from
memory storage to CPU registers to perform the necessary logical or arithmeti-
cal operation plus the cycles taken to put the result back to memory storage.

A second bottleneck in modern computing, not as critical as the above, is
the time elapsed to get processor instructions from memory into the CPU.

The amount of data we are capable of obtaining from any number of phe-
nomena has always been greater than the amount of memory available in our
computers. Thus we have relied on slower memory devices with much larger
storage areas. In the beginning these devices were magnetic tapes, which had
a number of disadvantages too great to mention here. Currently, rotating disk
drives have become quite reliable and can be configured for parallel access to
provide very large storage areas. With such devices, current comodity off the
shelf devices are capable of handling datasets of up to 18 exabytes. Eventhough
that may seem an unattainable amount of data, current oil exploration tech-
niques can quickly fill up those buckets. Future technology, with 128 bit data
addressing, will put data sets sizes at the yottabyte (28°) and beyond.

So all that data can reside on storage devices. How can we minimize the
access time for one particular data record? How can we define a strategy that
will scale in performance as our data set size continues to grow? Solving that
problem is the heart of DBH usage of quantified numbers.



Limits on our computers

The basic unit of all computational machines is the bit. This can be interpreted
as the magnetic polarity of a item which can be addressed with an positive
integer. This item may be a piece of silicon or even be electron. Every computer
uses binary numbers. The accustomed usage of decimal based hindu numbers
is arbitrary and is a legacy of our first computational machine (the fingers on
our hands). Since binary notation requires many digits, hexadecimal notation is
preferred, since this format allows for quick mental translation to binary format.

Combining bits we can construct any integer we desire, limited only by the
number of bits we are allowed to use. Processor architectures are designed
around this parameter and define the size of the arithmetic and logic registers.
Beyond this size we cannot represent an integer. If we require negative as well
as positive integers, the maximum value is halved, although the cardinality of
the set —or number of elements— remains the same.

In order to approximate real numbers (R), our computers will express them
as a rational number in the interval [0, 1] multiplied by a power of ten (scientific
notation).

The first set of numbers to be conceived was the set of natural numbers
(N) for the most basic operation: counting. As such, the set is defined as
N = {1,2,3,...}. Zero is not included, because zero is a conccptﬂ Once the
operations of addition and subtraction were conceived, zero (additive identity)
and negative naturals (additive inverse) were added to define a new set, the
integers, Z = {...,—-3,-2,—-1,0,1,2,3,...}. For multiplication and division,
a new set of numbers, isomorphic to the set of natural numbers, had to be
defined. This set is called the rational numbers (Q). Rational numbers are all
those which may be expressed as a quotient p/q, where p is an integer and ¢ is
a natural number.

It can be shown that there are just as many integers as there are rational
numbers, and there is a one to one relationship between them. In other words,
given any finite set of rational numbers, these can be written as a set of integers.
Thus our computers can work reliably with a subset of rational numbers.

In the eighteenth century, Leibnitz and Newton raised the flag of the differ-
ential revolution, summing up the work of many mathematitians into calculus.
The value of calculus was quickly recognized as Newton showed how to deter-
mine the motion of the planets with an accuracy until then unheard of. Since
then, scientists around the world have been applying differential and integral
models to just about every phenomena which varies with respect to time. This
leads to differential and integral equations which for the most part, cannot be
solved exactly.

In order for calculus to exist, a second type of fundamental numbers must
exist, the irrational numbers. These numbers cannot be rationalized. In other
words, there is no way they may be expressed as p/q, with p, ¢ € Q. Irrational
numbers can be viewed as a series of digits which goes on to infinity. Each

ITen apples are apples, but zero apples is not an apple.



digit of a single rational number can be mapped in a bijective relationship with
the set of integers. In other words, the digits —or symbols— in an irrational
number is countable.

7, the most known irrational number, is the ratio of the diameter to the
circumference of a perfect circle —and has been approximated for milenia. Ir-
rational numbers can only only exist in nature if the continuum of matter is
taken for granted, i.e., when nature is composed of an infinitely divisible mix-
ture of fundamental elements. If, on the other hand, Democritus’ atomic theory
is accepted —i.e., nature is composed of indivisible atoms and void space— irra-
tional numbers cannot exist in nature. As an example, no perfect circle can ever
be created, since in the end the circle will be nothing more than a equilateral
polygon made up of atoms, and 7 would be a rational number which depends
on the number of atoms that make up the polygon.

Even though irrational numbers exist only in the mathematical theory, they
are certainly useful, just as complex numbers are. But we should never lose
sight of the fact that our computational machines can only aproximate them.
At some point we must truncate the infinite series of digits which define each
and every irrational number. And although we can get as close as we want to
any irrational number with a rational number, there are so many irrationals
that they cannot even be counted. This contradicts the atomic theory, since the
atoms in the universe, even if they be infinite in number, may be counted.

Quantified Numbers

Although numbering each record consecutively in decimal, hexadecimal or even
binary base is a concept easily grasped and immediate to the human mind, for
access on our computational machine it is not optimum, especially when the
record size is not uniform. An efficient access method is by means of quantified
numbers.

Say we have a series of data records. These data represent some phenomena
from the universe which surrounds us. In mathematical terms the atomic theory
implies that each atom in the universe can be counted and assigned a number
in the set of natural numbers (N). Since the atomic theory of the universe has
grown widely accepted since the eighteenth century, we may consider that each
data record can also be unequivocally addressed with an element of the natural
numbers. This would start with 1.

There is a limit to the amount of natural numbers which may be exactly
represented in our computers (254 on 64 bit architecture). This amount is
called the cardinality of the finite set of representable natural numbers. Since
computers can only operate on a finite subset of the rational numbers, but p
and ¢ in the ratio p/q may have integer and natural values, the rational subset
on which the computer operates is poked full of holes.

Quantified numbers, on the other hand, are defined considering the char-
acteristics of our computational machine. In other words, they are defined
considering that our machine can only work with a finite subset of the natural



numbers.

Definition. The quantified numbers are an isomorphism of the natural num-
bers expressed in a different notation, as follows:

e Natural numbers of base b are expressed with n digits and b symbols,
b is fixed and n may grow indefinitely.

e Quantified numbers of base b are expressed with b digits and n sym-
bols, b is fixed and n may grow indefinitely.

The main characteristic of quantified numbers is the number of digits, or base.
Just as natural numbers may be expressed with any finite base, so can quantified
numbers. Although the cardinality of the symbol set in a quantified number is
infinite, when applied to a finite subset of the natural numbers —which is what
we have in our computers—, the cardinality of the symbol set is also finite.

Where quantified numbers differ radically from natural numbers is with re-
spect to order. Quantified numbers of base 2 have the same order as natural
numbers, but for a higher base the order may differ. In order to define order for
quantified numbers the concept of quanta is introduced.

Definition. Quanta is the sum of the symbol representation of the number.
The maximum quanta is the cardinality of the symbol set defined by the
base.

Definition. The magnitude of a quantified number is obtained from its quanta.

Since several quantified numbers may have the same quanta, a second rule may
be introduced to establish a unique order. This second instance rule may be
—for example— a traditional right to left symbol value. Ordinary numbers
are ordered with respect to this traditional right to left symbol value. This
secondary rule is not necessary for data retrieval algorithms in DBH.

Summing up, for a quantified number, the cardinality of the symbol table
is equal to maximum quanta in the set, while for a non—decimal base number,
the cardinality of the symbol set is defined by the base of the number system.
Furthermore, quantified numbers always have the same number of digits, while
for natural numbers the number of digits will grow indefinitely.

Although a quantified number appears similar to a number expressed in a
non—decimal base with hindu symbols, the two should not be confused.

Table [T] shows quantified numbers base 3 and natural numbers base 4 asso-
ciated to the respective natural number base 10. The quantum value for each
representation is also shown. The order which appears in the table is that of
the natural numbers, and quantified numbers are only ordered by quanta (no
secondary rule). If the secondary order criteria is applied to the quantified
numbers, the order of the natural numbers is not maintained (table [2)).

The cautious reader may ask whether any practical use of quantified numbers
actually exists in nature. Eventhough they may be mathematically isomorphic
to natural numbers, physical reality apparently is best reflected by the order of



’ N \ quantified \ quanta | base 4 | quanta
1 000 0 001 1
2 001 1 002 2
3 010 1 010 1
4 100 1 011 2
5 002 2 012 3
6 011 2 020 2
7 020 2 021 3
8 101 2 022 4
9 110 2 100 1
10 200 2 101 2
11 003 3 102 3
12 012 3 110 2
13 021 3 111 3
14 030 3 112 4
15 102 3 120 3
16 111 3 121 4
17 120 3 122 5
18 201 3 200 2
19 210 3 201 3
20 300 3 202 4
21 004 4 210 3
22 013 4 211 4
23 022 4 212 5
24 031 4 220 4
25 040 4 221 5
26 103 4 222 6
27 112 4 1000 1

Table 1: Values of quantified numbers base 3 compared with natural numbers
base 4

’ \ quantified \ quanta ‘
000 0
001
010

N
1
2
3
4 100
6
8
9
5
7

011
101
110
002
020
0 200

NN NN DN DN =] =

—

Table 2: Values of quantified numbers base 3 ordered by quanta



Natural number \ Quantified expression

1 0000
2 0001
3 0010
4 0100
5 1000
6 0002
7 0011
8 0020
9 0101
10 0110
11 0200
12 1001
13 1010
14 1100
15 2000
16 0003
17 0012
18 0021
19 0030
20 0102

Table 3: First twenty quantified numbers, base 4

natural numbers, not quantified numbers, it so seems. In any case, quantified
numbers in base 2 have the exact same order as do natural numbers in any base.
But quantified numbers base 4 present an interesting application to an observed
atomic phenomena which is not apparent when when natural numbers are used.

Atomic Orbitals and Quantified Numbers

Atomic theory indicates that quantified numbers clearly exist in nature. Take
the quantified number set defined by base four. Table [3| shows the first 20
numbers. Table [] shows the quanta value and the frequency with which this
magnitud appears.

In the atomic theory, electrons oscilate in pairs within orbitals around the
nucleus of atoms. Each energy level may contain one or more types of orbitals:
s, p, d, f and theoretical g. Energy level 1 can only contain one s type orbital.
Level 2 may have one s and three p orbitals. Level 3 may contain five additional
d orbitals. Level 4 can fit an additional seven f orbitals. A theoretical g orbital
would enter level 5, and if the series of primary numbers {1,3,5,7, ...} indicate
the number of orbitals in each succesive shape, there would be eleven g orbitals
to complete energy level 5. An important consideration is that energy levels are
not completed sequentially, instead electrons tend to simpler orbitals in higher



quanta \ frequency | energy level | orbitals \ Atomic number / symbol

1 1 1 1 2 / He

2 4 2 4 10 / Ne

3 10 3 10 30 / Zn

4 20 4 20 70 / Yb

5 35 5 35 > 102 / No
Table 4:

energy level before more complex orbitals in lower energy levels. The order in
which orbitals are filled occurs as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d,
5p, 6s, 4f, 5d, 6p, Ts, 5f, 6d, 7p. Table [4 shows the orbitals that must be filled
with electrons in order to complete each energy level, alongside the frequency
for each respective quanta in base 4 quantified numbers. The match between
the number of orbitals and quanta frequency is exact.

This takes us back to the original Niels Bohr atomic model, where electrons
would fill energy levels, and these energy levels are ordered as the natural num-
bers (i.e., the order for base 2 quantified numbers). The only precision to make
is that the order that should be followed is that defined by the base 4 quantified
numbers.

Base 4 quantified keyed DBH structures for the atomic elements Yb and
U are shown in figures [I| and This demonstrates that quantified numbers
actually exist in nature (at the atomic level at least) and the realm of application
extends beyond the formation of DBH keys which ensures the scalable growth
of balanced n—dimensional data trees.

DBH has several functions to convert from natural numbers to quantified
numbers. The only difference between these functions are the symbols contained
in the symbol table. Function genkey() starts with ’0’, while genkey?2 starts with
'A’, and genkeyO starts with 0.

As an additional function, DBH library provides the orderkey() function,
which maps a subset of the natural numbers to fixed digit variable base hindu
number.

If data records are to be accessed randomly, the order of the natural num-
bers is irrelevant. But as shown above, the quanta is of utmost importance to
minimize the access to any record in general.

As to the appearance of quantified numbers in nature, modern atomic theory
has established that electrons are found in orbitals. Electron orbitals do not
scale in energy levels as planetary orbits do. Instead, several orbitals may have
the same energy level. Quantified numbers provide a simple way to associate
these orbitals to their respective energy level.
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Figure 1: Atomic YD electronic structure and associated DBH structure
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Quantified base 4 DBH structue (X'*°)
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Conclusions

DBH software —in use in over 80 countries since 2002— has shown that n—
dimensional data tables are an efficient way to organize large amounts of data
in a scalable manner which surpases current storage device capacities and which
continues to support ever larger data sets with the use of quantified numbers as
a means for the creation of index keys.

Quantified numbers are a tool to work within the limited symbol representa-
tion available to our computational machines and are also a means to understand
certain atomic level phenomena in a simple way.

More research on the nature of quantified numbers is necessary to grasp the
full potential of this set of numbers when applied to computational science and
numerical methods, as well as other branches of modern science.
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