
pyconfigure
for version 0.2.1, 21 August 2013

bug-pyconfigure@gnu.org

mailto:bug-pyconfigure@gnu.org

This manual is for pyconfigure (version 0.2.1, updated 21 August 2013).

Copyright c© 2012, 2013 Brandon Invergo

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

i

Table of Contents

1 Introduction . 1
1.1 Configuring Python packages . 1

2 Installation . 2

3 Invoking pyconf . 3
3.1 PKG-INFO metadata . 3

4 Existing projects . 5

5 Customization . 6
5.1 configure.ac . 6

5.1.1 Required macros . 6
5.1.2 Verifying the Python version . 7
5.1.3 Checking for a module or function . 7
5.1.4 Writing test programs . 8
5.1.5 Using Sphinxbuild to build documentation 8

5.2 Makefile.in . 8
5.2.1 Makefile.in (distutils) . 9
5.2.2 Makefile.in (Make) . 9

5.3 setup.py.in . 10

6 Appendix . 11
6.1 Autoconf macros . 11

Appendix A GNU Free Documentation License
. 13

Chapter 1: Introduction 1

1 Introduction

Python packages typically are configured and installed through the use of the distutils

module or one of its derivatives. The user performs necessary actions via a Python script
called setup.py. For simple programs, this is straight-forward. However, for more complex
software packages, especially for those which also include code in other languages such as
C or Fortran, the limitations of the distutils method quickly become apparent.

The configuration and installation of GNU software and many other programs, on the
other hand, is done according to the use of standard configure scripts and Make recipes.
This method has the advantage of being language-agnostic, very flexible, and time-proven.
pyconfigure consists of all the files necessary to begin using the standard GNU build process
to configure and install a Python package.

1.1 Configuring Python packages

Configuring and installing Python packages which use pyconfigure follows the familiar steps
of all standard GNU software:

$./configure

$ make

$ make install

As usual, the user may pass arguments to configure in order to specify how she wants
the software to be installed. By default, the generated configure script takes the following
useful arguments, among others:

Argument Description

--prefix Set the root directory in which to install files (default=/usr/local)

--with-virtualenv Install to a virtualenv at $prefix

PYTHON Path to the Python interpreter to use

PYTHONPATH The PYTHONPATH to use during the installation

However, as the developer is expected to customize these files, the final configure script
may take many more arguments. The developer is expected to provide proper documenta-
tion in this case.

Chapter 2: Installation 2

2 Installation

Pyconfigure includes the template files that you will use in your projects, the pyconf script
to copy those files into a project’s directory, and this documentation. In order for their
usage to be convenient, it is recommended to install them. Installation of pyconfigure
follows the standard GNU installation procedure. Upon unpacking the source, navigate
into its directory and run the following command sequence:

$./configure --prefix=/usr/local

$ make install

If you wish the files to be installed to a different location, specify it using the --prefix
option.

Chapter 3: Invoking pyconf 3

3 Invoking pyconf

Before invoking the pyconf script, you first must decide whether you would prefer to have
your installation logic written in Python or in Make. If you choose the former, the generated
Makefile will be a wrapper around the Python installation script (i.e. setup.py), while if
you choose the latter, the Python installation script will be a wrapper around the Makefile.

Next, you must create a PKG-INFO file containing standard metadata about your project
(see Section 3.1 [PKG-INFO metadata], page 3). Finally, in the most basic case, you would
navigate to your project’s directory and simply invoke pyconf on your project’s PKG-INFO
file:

$ pyconf PKG-INFO

This will generate a configure.ac Autoconf file, a configure script generated from
that Autoconf file, a setup.py.in installation file (to be configured by the user upon the
invocation of configure) and a Makefile.in file which wraps the functionality of setup.py.
If any of these files already exist, pyconf will not overwrite them unless the --overwrite

option is passed.

If you wish the files to be copied into a different directory, you may add the --output

option (or its short form -o) to specify the directory into which you would prefer the files
to be copied.

$ pyconf -output=$HOME/Projects/pyproject PKG-INFO

If you would prefer to write your installation logic using Make, pass the --prefer-make
(-m) option:

$ pyconf --prefer-make PKG-INFO

Now, the setup.py.in script that is generated will instead be a wrapper around the
Makefile.in file. You would then extend the installation process in the latter file.

If you would prefer a pure-Python approach, pyconf may optionally not generate any
Makefile by passing the --no-make option. Finally, if you only need pyconfigure’s Autoconf
macros, you may pass the --macros-only option, which causes pyconf to exit immediately
after copying the macros into your package directory.

3.1 PKG-INFO metadata

As a base, the pyconf script requires a PKG-INFO file containing metadata about the project.
This file should fit the requirements of the PKG-INFO metadata file format as outlined in
the PEP 345 document. The file consists of several Key: value pairs. Some keys may be
specified more than once, meaning that the package has several such values, while others
may appear only once. Refer to PEP 345 for the authoritative specification.

For the purposes of pyconfigure, only four keys are required. The first, “Metadata-
Version” must have a value of 1.2 or higher; earlier metadata specification versions are not
supported. “Name”, which may only appear once, contains the package’s name. Similarly,
“Version” contains the package version number. Finally, “Author-email” contains the prin-
cipal email address for the project. Other keys are required to fully meet the PEP 345
specification; refer to that document for more information.

Here is a minimal example required to get started:

http://www.python.org/dev/peps/pep-0345/

Chapter 3: Invoking pyconf 4

Metadata-Version: 1.2

Name: foo

Version: 1.5

Author-email: bug-foo@gnu.org

Chapter 4: Existing projects 5

4 Existing projects

Using pyconfigure with existing projects is easy. For example, if your project already has
a setup.py script, there is no need to replace it with pyconfigure. In this case, the best
way to proceed would be to run pyconf to copy all of the files into your project’s directory.
Next, you simply need to copy the contents of your setup.py script into setup.py.in. Be
sure not to just overwrite the file directly! Inside setup.py.in you will see several strings
like @PACKAGE_NAME@. These are strings that will be replaced by the configure script and
they should remain as they are. Most of the contents of the standard setup function should
have already been filled in through the information in the PKG-INFO file but if not, they can
be filled in manually. The default setup.py.in script is otherwise very simple, meaning
any extensions to it that you have written in your setup.py script can simply be copied in.

If your project does not yet have a setup.py script but it already has a Makefile, the
process is even easier. Simply call pyconf with --prefer-make and the setup.py.in file
that is generated in your project’s directory will simply wrap your Makefile (just be sure
not to pass the --overwrite option!).

Chapter 5: Customization 6

5 Customization

Once pyconf has generated the files in your project’s directory, you should customize them
to meet your project’s needs.

In particular, you will want to customize configure.ac and Makefile.in or
setup.py.in. configure.ac contains a series of macros which are used by Autoconf
to build a portable configure shell script. This script either guesses important system
settings or is provided them by the user. When the user invokes configure, it uses
Makefile.in and setup.py.in as templates to create the Make recipe Makefile and the
Python setup script setup.py.

5.1 configure.ac

There are some minimum modifications that should be made in configure.ac. The file
contains a significant amount of information in the form of comments, so it is possible to
discern your needs while editing. For more advanced usage, it is recommended to refer to
the See Info file autoconf, node ‘Autoconf’.

In this file you will see a macro called AC_INIT. This is a standard Autoconf macro.
The arguments to this are automatically generated from the PKG-INFO file that you used.
These three values are used extensively in the files modified by the configure script, so it is
important that they be correct.

Further down, you will also find a macro called PC_INIT. This is the core macro of
pyconfigure. This will build the code necessary to find a suitable Python interpreter on
the user’s computer. To that end, you can pass arguments to this macro which specify the
minimum and/or maximum supported Python versions.

While the default configure.ac script will likely be sufficient for a basic Python-based
project, it may be made to be much more powerful for packages with more complex needs.
To that end, several Autoconf macros are provided in the file m4/python.m4 to allow the
developer to write robust tests See Section 6.1 [Autoconf macros], page 11. Note that when
you distribute your software, you must include this directory and file with your distribution
if you also distribute your configure.ac file.

Once you modify your configure.ac to your liking, you must regenerate your configure
script with the bootstrap.sh script that is generated by pyconfigure.

$./bootstrap.sh

A full explanation of the general use of Autoconf macros is beyond the scope of this
document, however it is worth presenting some examples.

5.1.1 Required macros

Several macros are required in configure.ac to use pyconfigure. These are:

AC_INIT([project_name], [project_version], [project-email])

This initializes Autoconf and also substitutes your project name and version in any
output that it generates. The initial argument values are automatically generated by py-
configure when you first run the pyconf script. Note that the arguments are surrounded
by braces in all cases. This is to prevent M4 from trying to expand the arguments using
whatever macros it knows.

Chapter 5: Customization 7

AC_CONFIG_MACRO_DIR([m4])

This macro imports all of the Python Autoconf macros. If you choose to write your own
macros for other purposes, you should include them in the m4 directory as well.

PC_INIT([2.5], [3.3.1])

This is the key macro. It finds a Python interpreter available on the system that meets
optional version requirements specified in its arguments and saves its path in the PYTHON

variable. Generally speaking, the highest-version Python interpreter found within the given
version range (inclusive) will be used. Note, however, that minor version differences may
cause discrepancies. For example, the user may have Python 3.3.1 installed but a slight
difference in its release may cause the interpreter to internally report a slightly higher
version, causing this interpreter to not pass the version check. To be safe, set the maximum
version one bugfix release higher (i.e. “3.3.2” in this case).

PC_PYTHON_SITE_PACKAGE_DIR

PC_PYTHON_EXEC_PACKAGE_DIR

These two macros figure out where Python expects packages to be installed (i.e.
/usr/lib/python2.7/site-packages/) and saves them in the variables pkgpythondir

and pkgpyexecdir, respectively, for use in Makefile.in. These macros are only required
if you will be writing your installation logic in Make.

5.1.2 Verifying the Python version

As described in the previous section, PC_INIT finds the Python interpreter with the highest
version that meets the provided requirements. You may wish to perform other tests on the
version number yourself. There is a macro available to simplify this, PC_PYTHON_VERIFY_
VERSION (indeed, PC_INIT uses this macro internally).

m4_define(python_min_ver, 2.6.1)

PC_PYTHON_VERIFY_VERSION([>=], python_min_ver, ,

[AC_MSG_ERROR(Python interpreter too old)])

In this example, we set the minimum version to 2.6.1 through the use of an M4 macro.
We then check if the interpreter stored in the PYTHON variable (either set by the user or
found by PC_INIT) is at least of that version. If it is not, the resulting configure script
will exit with an appropriate error message. You may use any mathematical comparison
operator that Python recognizes for the first argument (“==”, “<=”, “>”, etc.).

5.1.3 Checking for a module or function

It’s reasonable to assume that many Python packages will have dependencies on other,
external modules. With the provided pyconfigure macros, it is simple to check for the
presence of dependencies on the system. All you have to do is use the PC_PYTHON_CHECK_

MODULE macro as follows:

PC_PYTHON_CHECK_MODULE([foo])

In this example, we checked for the presence of a module “foo.”

If the module is a hard requirement, you may provide actions to do if it is not present:

PC_PYTHON_CHECK_MODULE([foo], , AC_MSG_ERROR([Module foo is not installed]))

If you need more fine-grained control, you can also test for a specific function, for example
foo.bar(arg1, arg2):

Chapter 5: Customization 8

PC_PYTHON_CHECK_FUNC([foo], [bar], [arg1, arg2])

Remember that you may omit arguments to Autoconf macros: in the previous example,
the final two arguments, which correspond to the action to take if the test is successful and
if it fails simply are not present in the argument list. Similarly, if you do not need to pass
arguments to the test function, you can entirely omit the third argument to the macro:

PC_PYTHON_CHECK_FUNC([foo], [bar])

5.1.4 Writing test programs

One great benefit of Autoconf is the ability to embed test programs inside configure.
The pyconfigure macros allow for this by defining Python as a language within Autoconf.
You then would proceed to write test programs as you would in any other language that
Autoconf supports like C.

AC_LANG_PUSH(Python)[]

AC_RUN_IFELSE([AC_LANG_PROGRAM([dnl

some code here

import foo

], [dnl

some more code here

foo.bar()

])], [ACTION-IF-SUCCESSFUL], [ACTION-IF-FAILED])

AC_LANG_POP(Python)[]

The first argument to AC_LANG_PROGRAM is the so-called “prolog”, and typically will
contain your import statements or function definitions. The second argument contains the
main body of the program, which will be in the scope of an if __name__=="__main__":

block. So, you must be sure to indent the code appropriately.

5.1.5 Using Sphinxbuild to build documentation

Using pyconfigure and Autoconf to test for other tools is quite easy. For example, many
Python packages use Sphinxbuild to build their documentation. If this is the case for your
project, you might do something like the following:

AC_CHECK_PROGS([SPHINXBUILD], [sphinx-build sphinx-build3 sphinx-build2], [no])

AS_IF([test "x$SPHINXBUILD" = xno],

AC_MSG_WARN(sphinx-build is required to build documentation))

We simply use Autoconf’s AC_CHECK_PROGS macro to check for a series of possible
Sphinxbuild binaries and save the result to the SPHINXBUILD variable, which may then
be used in Makefile.in:

docs/build/index.html: $(wildcard $(srcdir)/docs/source/*)

ifneq ($(SPHINXBUILD),no)

$(SPHINXBUILD) -b html docs/source/ docs/build/

endif

5.2 Makefile.in

How you will customize the file Makefile.in and, indeed, what you will find in the file
when it is first generated both depend on whether you specified if you prefer to write your
installation logic in Make See Chapter 3 [Invoking pyconf], page 3.

Chapter 5: Customization 9

5.2.1 Makefile.in (distutils)

If you did not specify --prefer-make, Makefile.in will be a wrapper around the function-
ality of the Python setup.py script. For a basic program, no great amount of customization
of this file will be necessary. The file contains many comments, which introduce its various
sections.

By default, the file supports installing to a Virtualenv, depending on whether the user has
specified to do so when running configure. You will likely not have to change the “install”
recipe. If you have other files to install, it is recommended to create new targets to install
them, and to add those targets as prerequisites to the “install” target. For example, if you
have extra data files to install, you might create a “install-data” target and corresponding
recipe, and then add “install-data” as a prerequisite to “install”:

install: installdirs install-data

If you do install more files, be sure that they are properly removed when the user runs
make uninstall by modifying the recipe for the “uninstall” target. Note that, at this
time, Python’s distutils does not have its own “uninstall” target, so this must be done
manually.

If you intend to produce source distributions via the Makefile, which is more flexible
than doing so via setup.py, it is important to modify the DIST_FILES variable located near
the top of Makefile.in. Any file or directory you list there will be included in your source
distribution.

Finally, you may write recipes to build your package’s documentation, which may not
be covered by your setup.py script. How you accomplish this is highly dependent upon
how you have organized your documentation sources. One example of how you might do it
is included in the Makefile.in, commented-out at the end.

5.2.2 Makefile.in (Make)

If you passed the option --prefer-make to pyconf, Makefile.in will contain all of the
installation logic for your package. It is highly recommended that you be familiar with
basic Make usage. See the See Info file make, node ‘Make’.

By default, Makefile.in will contain the logic necessary to install a basic Python pack-
age consisting of one or more modules. The primary customization may be performed via
the variables found at the beginning of the file: PYPACKAGES, PYPACKAGE_ROOT, SCRIPTS,
PKG_DATA, DATA, and DATA_ROOT.

PYPACKAGES should contain a space-separated list of all of the Python modules in your
package (i.e. top-level directories containing a __init__.py file). When your package is
installed to the user’s computer, these modules will be stored in the Python package di-
rectory (generally $prefix/lib/python$version/{site,dist}-packages/). If the mod-
ules are contained in a sub-directory, say src, of your source directory, you may set the
PYPACKAGE_ROOT variable to that directory.

PYPACKAGES = foo bar

PYPACKAGE_ROOT = src

In this example, there are two modules to install: “foo” and “bar”. The modules are
to be found under the src directory; thus, for example, module “foo” is to be found at
src/foo.

Chapter 5: Customization 10

The directories listed under PYPACKAGES will only have their Python files installed. If
your modules depend on other, non-Python data files, you may list these under the PKG_

DATA variable. Data files should be listed relative to their parent module. Thus, if module
“foo” contains a file called bar.dat, set PKG_DATA = foo/bar.dat.

Other data files, which are not specific to any of the Python modules, may be specified
under the DATA variable. As before, if your data files are all stored under a particular
sub-directory, you may specify it in DATA_ROOT. Files listed under DATA are installed to the
package’s data directory, which is typically /usr/local/share/$package).

Finally, if your package has any scripts to install, list them under the SCRIPTS variable.
They should be listed as files relative to the directory containing Makefile.in. Thus, if
your script baz is located in the sub-directory bin, you would set SCRIPTS = bin/baz.

One particular advantage of writing the installation logic in Make is the ease with which
you may work with non-Python code in your project, such as extensions written in C. How
these recipes are to be written is dependent upon the build requirements of this code, and
you are thus referred to the See Info file make, node ‘Make’. Any installation recipes should
be given their own targets and made as prerequisites of the “install” target.

5.3 setup.py.in

pyconf will automatically generate a setup.py.in file, to be configured by the configure
script to produce the Python setup.py script. If the --prefer-make option was specified,
this file will merely contain Python code which calls Make on the generated Makefile,
and needs not to be modified. Otherwise, the file will contain basic Python code to use
distutils for package installation. The reader is referred to the Python documentation
for more information on how to customize this file.

Chapter 6: Appendix 11

6 Appendix

6.1 Autoconf macros

Macro Name & Arguments Description Variables exported

PC_INIT([MINIMUM-

VERSION], [MAXIMUM-

VERSION])

Initialize pyconfigure by
finding the highest-version
Python interpreter that
meets the specified
requirements. If no such
interpreter is found, exit
with an error. This is a
convenience macro that
includes PC_PROG_PYTHON

and does the version
checking via PC_PYTHON_

VERIFY_VERSION.

PYTHON

PC_PROG_PYTHON([NAME-

TO-CHECK], [MINIMUM-

VERSION], [MAXIMUM-

VERSION])

Find a Python interpreter
with the highest version
number between the given
minimum and maximum
versions. The version re-
quirement is performed in
a naive way, by simply
appending the major and
minor release numbers to
the interpreter name (i.e.
“python2.7”).

PYTHON

PC_PROG_PYTHON_

CONFIG([NAME-TO-CHECK])

Find a python-config
program

PYTHON_CONFIG

PC_PYTHON_VERIFY_

VERSION([OPERATOR],

[VERSION], [ACTION-IF-

TRUE], [ACTION-IF-NOT-

TRUE])

Verify that the Python in-
terpreter is of a sufficient
version number according
to some comparison opera-
tor ("==", "<=", etc.)

PC_PYTHON_CHECK_VERSION Get the version of the
Python interpreter

PYTHON_VERSION

PC_PYTHON_CHECK_PREFIX Check what Python thinks
is the prefix

PYTHON_PREFIX

PC_PYTHON_CHECK_EXEC_

PREFIX

Check what Python thinks
is the exec prefix

PYTHON_EXEC_PREFIX

PC_PYTHON_CHECK_INCLUDES Check the include flags (’-
I[header]...’) for including
the Python header files

PYTHON_INCLUDES

Chapter 6: Appendix 12

PC_PYTHON_CHECK_HEADERS Check for the Python
header files (i.e. Python.h)

HAVE_PYTHON_H

PC_PYTHON_CHECK_LIBS Check for the proper LIBS
flags to load the Python
shared libraries

PYTHON_LIBS

PC_PYTHON_TEST_LIBS Test for the presence of the
Python shared libraries

HAVE_LIBPYTHON

PC_PYTHON_CHECK_CFLAGS Find the CFLAGS that
Python expects

PYTHON_CFLAGS

PC_PYTHON_CHECK_LDFLAGS Find the LDFLAGS that
Python expects

PYTHON_LDFLAGS

PC_PYTHON_CHECK_

EXTENSION_SUFFIX

Check the extension suffix
given to Python extension
modules (Python 3 only)

PYTHON_EXTENSION_

SUFFIX

PC_PYTHON_CHECK_ABI_

FLAGS

Check the ABI flags used by
Python (Python 3 only)

PC_PYTHON_ABI_FLAGS

PC_PYTHON_CHECK_PLATFORM Check what platform
Python thinks this is
PYTHON_PLATFORM

PC_PYTHON_CHECK_SITE_DIR Check the appropri-
ate place to install
Python packages (i.e.
$(prefix)/lib/python2.7/site-

packages)

pythondir

PC_PYTHON_SITE_PACKAGE_

DIR

A convenience macro; adds
the package’s name to
pythondir

pkgpythondir

PC_PYTHON_CHECK_EXEC_DIR Check directory for in-
stalling Python extension
modules

pyexecdir

PC_PYTHON_EXEC_PACKAGE_

DIR

A convenience macro; adds
the package’s name to
pyexecdir

pkgpyexecdir

PC_PYTHON_CHECK_MODULE Test if a given Python
module can be successfully
loaded

PC_PYTHON_CHECK_FUNC Test if a given Python
function can be called
successfully.

Appendix A: GNU Free Documentation License 13

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix A: GNU Free Documentation License 14

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 15

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 16

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 17

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 18

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 19

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 20

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Configuring Python packages

	Installation
	Invoking pyconf
	PKG-INFO metadata

	Existing projects
	Customization
	configure.ac
	Required macros
	Verifying the Python version
	Checking for a module or function
	Writing test programs
	Using Sphinxbuild to build documentation

	Makefile.in
	Makefile.in (distutils)
	Makefile.in (Make)

	setup.py.in

	Appendix
	Autoconf macros

	GNU Free Documentation License

