
Stow 2.4.0
Managing the installation of software packages

Bob Glickstein, Zanshin Software, Inc.
Kahlil Hodgson, RMIT University, Australia.
Guillaume Morin
Adam Spiers

This manual describes GNU Stow version 2.4.0 (7 April 2024), a program for managing
farms of symbolic links.

Software and documentation is copyrighted by the following:

c© 1993, 1994, 1995, 1996 Bob Glickstein bobg+stow@zanshin.com

c© 2000, 2001 Guillaume Morin gmorin@gnu.org

c© 2007 Kahlil (Kal) Hodgson kahlil@internode.on.net

c© 2011 Adam Spiers stow@adamspiers.org

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the section enti-
tled “GNU General Public License” is included with the modified manual, and
provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the Free
Software Foundation.

mailto:bobg+stow@zanshin.com
mailto:gmorin@gnu.org
mailto:kahlil@internode.on.net
mailto:stow@adamspiers.org

i

Table of Contents

1 Introduction . 1

2 Terminology . 3

3 Invoking Stow . 5

4 Ignore Lists . 8
4.1 Motivation For Ignore Lists . 8
4.2 Types And Syntax Of Ignore Lists . 8
4.3 Justification For Yet Another Set Of Ignore Files 9

5 Installing Packages . 11
5.1 Tree folding . 11
5.2 Tree unfolding . 11
5.3 Ownership . 12
5.4 Conflicts during installation . 12

6 Deleting Packages . 13
6.1 Refolding “foldable” trees. 13

7 Conflicts . 14
7.1 Deferred Operation . 14

8 Mixing Operations . 15

9 Multiple Stow Directories . 16

10 Target Maintenance . 17

11 Resource Files . 18

12 Compile-time vs. Install-time 19
12.1 Advice on changing compilation and installation parameters . . 19
12.2 GNU Emacs . 20
12.3 Other FSF Software . 20
12.4 Cygnus Software . 20
12.5 Perl and Perl 5 Modules . 21

ii

13 Bootstrapping . 23

14 Reporting Bugs . 24

15 Known Bugs . 25

GNU General Public License . 26

Index . 37

1

1 Introduction

GNU Stow is a symlink farm manager which takes distinct sets of software and/or data
located in separate directories on the filesystem, and makes them all appear to be installed
in a single directory tree.

Originally Stow was born to address the need to administer, upgrade, install, and remove
files in independent software packages without confusing them with other files sharing the
same file system space. For instance, many years ago it used to be common to compile
programs such as Perl and Emacs from source and install them in /usr/local. When one
does so, one winds up with the following files1 in /usr/local/man/man1:

a2p.1

ctags.1

emacs.1

etags.1

h2ph.1

perl.1

s2p.1

Now suppose it’s time to uninstall Perl. Which man pages get removed? Obviously perl.1

is one of them, but it should not be the administrator’s responsibility to memorize the
ownership of individual files by separate packages.

The approach used by Stow is to install each package into its own tree, then use symbolic
links to make it appear as though the files are installed in the common tree. Administration
can be performed in the package’s private tree in isolation from clutter from other packages.
Stow can then be used to update the symbolic links. The structure of each private tree
should reflect the desired structure in the common tree; i.e. (in the typical case) there
should be a bin directory containing executables, a man/man1 directory containing section
1 man pages, and so on.

While this is useful for keeping track of system-wide and per-user installations of software
built from source, in more recent times software packages are often managed by more so-
phisticated package management software such as rpm (https://en.wikipedia.org/wiki/
Rpm_(software)), dpkg (https://en.wikipedia.org/wiki/Dpkg), and Nix (https://
en.wikipedia.org/wiki/Nix_package_manager) / GNU Guix (https://en.wikipedia.
org/wiki/GNU_Guix), or language-native package managers such as Ruby’s gem (https://
en.wikipedia.org/wiki/RubyGems), Python’s pip (https://en.wikipedia.org/
wiki/Pip_(package_manager)), Javascript’s npm (https://en.wikipedia.org/wiki/
Npm_(software)), and so on.

However Stow is still used not only for software package management, but also for other
purposes, such as facilitating a more controlled approach to management of configuration
files in the user’s home directory2, especially when coupled with version control systems3.

Stow was inspired by Carnegie Mellon’s Depot program, but is substantially simpler and
safer. Whereas Depot required database files to keep things in sync, Stow stores no extra

1 As of Perl 4.036 and Emacs 19.22. These are now ancient releases but the example still holds valid.
2 http://brandon.invergo.net/news/2012-05-26-using-gnu-stow-to-manage-your-dotfiles.html
3 http://lists.gnu.org/archive/html/info-stow/2011-12/msg00000.html

https://en.wikipedia.org/wiki/Rpm_(software)
https://en.wikipedia.org/wiki/Rpm_(software)
https://en.wikipedia.org/wiki/Dpkg
https://en.wikipedia.org/wiki/Nix_package_manager
https://en.wikipedia.org/wiki/Nix_package_manager
https://en.wikipedia.org/wiki/GNU_Guix
https://en.wikipedia.org/wiki/GNU_Guix
https://en.wikipedia.org/wiki/RubyGems
https://en.wikipedia.org/wiki/RubyGems
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Npm_(software)
https://en.wikipedia.org/wiki/Npm_(software)
http://brandon.invergo.net/news/2012-05-26-using-gnu-stow-to-manage-your-dotfiles.html
http://lists.gnu.org/archive/html/info-stow/2011-12/msg00000.html

Chapter 1: Introduction 2

state between runs, so there’s no danger (as there was in Depot) of mangling directories when
file hierarchies don’t match the database. Also unlike Depot, Stow will never delete any
files, directories, or links that appear in a Stow directory (e.g., /usr/local/stow/emacs),
so it’s always possible to rebuild the target tree (e.g., /usr/local).

Stow is implemented as a combination of a Perl script providing a CLI interface, and a
backend Perl module which does most of the work.

For information about the latest version of Stow, you can refer to http://www.gnu.org/
software/stow/.

http://www.gnu.org/software/stow/
http://www.gnu.org/software/stow/

3

2 Terminology

A package is a related collection of files and directories that you wish to administer as
a unit — e.g., Perl or Emacs — and that needs to be installed in a particular directory
structure — e.g., with bin, lib, and man subdirectories.

A target directory is the root of a tree in which one or more packages wish to appear
to be installed. /usr/local is a common choice for this, but by no means the only such
location. Another common choice is ~ (i.e. the user’s $HOME directory) in the case where
Stow is being used to manage the user’s configuration (“dotfiles”) and other files in their
$HOME. The examples in this manual will use /usr/local as the target directory.

A stow directory is the root of a tree containing separate packages in private subtrees.
When Stow runs, it uses the current directory as the default stow directory. The examples
in this manual will use /usr/local/stow as the stow directory, so that individual packages
will be, for example, /usr/local/stow/perl and /usr/local/stow/emacs.

An installation image is the layout of files and directories required by a package, relative
to the target directory. Thus, the installation image for Perl includes: a bin directory con-
taining perl and a2p (among others); an info directory containing Texinfo documentation;
a lib/perl directory containing Perl libraries; and a man/man1 directory containing man
pages.

Note: This is a pre-installation image which exists even before Stow has in-
stalled any symlinks into the target directory which point to it.

A package directory is the root of a tree containing the installation image for a partic-
ular package. Each package directory must reside in a stow directory — e.g., the package
directory /usr/local/stow/perl must reside in the stow directory /usr/local/stow. The
name of a package is the name of its directory within the stow directory — e.g., perl.

Thus, the Perl executable might reside in /usr/local/stow/perl/bin/perl,
where /usr/local is the target directory, /usr/local/stow is the stow directory,
/usr/local/stow/perl is the package directory, and bin/perl within is part of the
installation image.

A symlink is a symbolic link, i.e. an entry on the filesystem whose path is sometimes
called the symlink source, which points to another location on the filesystem called the
symlink destination. There is no guarantee that the destination actually exists.

In general, symlinks can be relative or absolute. A symlink is absolute when the des-
tination names a full path; that is, one starting from /. A symlink is relative when the
destination names a relative path; that is, one not starting from /. The destination of a
relative symlink is computed starting from the symlink’s own directory, i.e. the directory
containing the symlink source.

Note: Stow only creates symlinks within the target directory which point to
locations outside the target directory and inside the stow directory.

Consequently, we avoid referring to symlink destinations as symlink targets,
since this would result in the word “target” having two different meanings:

1. the target directory, i.e. the directory into which Stow targets installation,
where symlinks are managed by Stow, and

Chapter 2: Terminology 4

2. the destinations of those symlinks.

If we did not avoid the second meaning of “target”, then it would lead to
confusing language, such as describing Stow as installing symlinks into the
target directory which point to targets outside the target directory.

Similarly, the word “source” can have two different meanings in this context:

1. the installation image, or some of its contents, and

2. the location of symlinks (the “source” of the link, vs. its destination).

Therefore it should also be avoided, or at least care taken to ensure that the
meaning is not ambiguous.

5

3 Invoking Stow

The syntax of the stow command is:

stow [options] [action flag] package ...

Each package is the name of a package (e.g., ‘perl’) in the stow directory that we wish to
install into (or delete from) the target directory. The default action is to install the given
packages, although alternate actions may be specified by preceding the package name(s)
with an action flag.

The following options are supported:

‘-d dir’
‘--dir=dir’

Set the stow directory to dir. Defaults to the value of the environment variable
STOW_DIR if set, or the current directory otherwise.

‘-t dir’
‘--target=dir’

Set the target directory to dir instead of the parent of the stow directory.
Defaults to the parent of the stow directory, so it is typical to execute stow

from the directory /usr/local/stow.

‘--ignore=regexp’
This (repeatable) option lets you suppress acting on files that match the given
Perl regular expression. For example, using the options

--ignore='.*\.orig' --ignore='.*\.dist'

will cause stow to ignore files ending in .orig or .dist.

Note that the regular expression is anchored to the end of the filename, because
this is what you will want to do most of the time.

Also note that by default Stow automatically ignores a “sensible” built-in list of
files and directories such as CVS, editor backup files, and so on. See Chapter 4
[Ignore Lists], page 8, for more details.

‘--defer=regexp’
This (repeatable) option avoids stowing a file matching the given regular ex-
pression, if that file is already stowed by another package. This is effectively
the opposite of --override.

(N.B. the name --defer was chosen in the sense that the package currently be-
ing stowed is treated with lower precedence than any already installed package,
not in the sense that the operation is being postponed to be run at a later point
in time; do not confuse this nomenclature with the wording used in [Deferred
Operation], page 14.)

For example, the following options

--defer=man --defer=info

will cause stow to skip over pre-existing man and info pages.

Equivalently, you could use ‘--defer='man|info'’ since the argument is just
a Perl regular expression.

Chapter 3: Invoking Stow 6

Note that the regular expression is anchored to the beginning of the path relative
to the target directory, because this is what you will want to do most of the
time.

‘--override=regexp’
This (repeatable) option forces any file matching the regular expression to be
stowed, even if the file is already stowed to another package. For example, the
following options

--override=man --override=info

will permit stow to overwrite links that point to pre-existing man and info pages
that are owned by stow and would otherwise cause a conflict.

The regular expression is anchored to the beginning of the path relative to the
target directory, because this is what you will want to do most of the time.

‘--dotfiles’
Enable special handling for dotfiles (files or folders whose name begins with
a period) in the package directory. If this option is enabled, Stow will add a
preprocessing step for each file or folder whose name begins with ‘dot-’, and
replace the ‘dot-’ prefix in the name by a period ‘.’. This is useful when Stow
is used to manage collections of dotfiles, to avoid having a package directory
full of hidden files.

For example, suppose we have a package containing two files, stow/dot-bashrc
and stow/dot-emacs.d/init.el. With this option, Stow will create symlinks
from .bashrc to stow/dot-bashrc and from .emacs.d/init.el to stow/dot-
emacs.d/init.el. Any other files, whose name does not begin with ‘dot-’, will
be processed as usual.

‘--no-folding’
This disables any further tree folding (see [tree folding], page 11) or refolding
(see [tree refolding], page 13). If a new subdirectory is encountered whilst
stowing a new package, the subdirectory is created within the target, and its
contents are symlinked, rather than just creating a symlink for the directory. If
removal of symlinks whilst unstowing a package causes a subtree to be foldable
(i.e. only containing symlinks to a single package), that subtree will not be
removed and replaced with a symlink.

‘--adopt’ Warning! This behaviour is specifically intended to alter the contents of your
stow directory. If you do not want that, this option is not for you.

When stowing, if a target is encountered which already exists but is a plain
file (and hence not owned by any existing stow package), then normally Stow
will register this as a conflict and refuse to proceed. This option changes that
behaviour so that the file is moved to the same relative place within the pack-
age’s installation image within the stow directory, and then stowing proceeds
as before. So effectively, the file becomes adopted by the stow package, without
its contents changing.

This is particularly useful when the stow package is under the control of a
version control system, because it allows files in the target tree, with potentially
different contents to the equivalent versions in the stow package’s installation

Chapter 3: Invoking Stow 7

image, to be adopted into the package, then compared by running something
like ‘git diff ...’ inside the stow package, and finally either kept (e.g. via
‘git commit ...’) or discarded (‘git checkout HEAD ...’).

‘-n’
‘--no’
‘--simulate’

Do not perform any operations that modify the file system; in combination with
-v can be used to merely show what would happen.

‘-v’
‘--verbose[=n]’

Send verbose output to standard error describing what Stow is doing. Verbosity
levels are from 0 to 5; 0 is the default. Using -v or --verbose increases the
verbosity by one; using ‘--verbose=n’ sets it to n.

‘-p’
‘--compat’

Scan the whole target tree when unstowing. By default, only directories spec-
ified in the installation image are scanned during an unstow operation. Pre-
viously Stow scanned the whole tree, which can be prohibitive if your target
tree is very large, but on the other hand has the advantage of unstowing pre-
viously stowed links which are no longer present in the installation image and
therefore orphaned. This option restores the legacy behaviour; however, the
--badlinks option to the chkstow utility may be a better way of ensuring that
your installation does not have any dangling symlinks (see Chapter 10 [Target
Maintenance], page 17).

‘-V’
‘--version’

Show Stow version number, and exit.

‘-h’
‘--help’ Show Stow command syntax, and exit.

The following action flags are supported:

‘-D’
‘--delete’

Delete (unstow) the package name(s) that follow this option from the target
directory. This option may be repeated any number of times.

‘-R’
‘--restow’

Restow (first unstow, then stow again) the package names that follow this
option. This is useful for pruning obsolete symlinks from the target tree after
updating the software in a package. This option may be repeated any number
of times.

‘-S’‘--stow’ explictly stow the package name(s) that follow this option. May be omitted if
you are not using the -D or -R options in the same invocation. See Chapter 8
[Mixing Operations], page 15, for details of when you might like to use this
feature. This option may be repeated any number of times.

8

4 Ignore Lists

4.1 Motivation For Ignore Lists

In many situations, there will exist files under the package directories which it would be
undesirable to stow into the target directory. For example, files related version control such
as .gitignore, CVS, *,v (RCS files) should typically not have symlinks from the target
tree pointing to them. Also there may be files or directories relating to the build of the
package which are not needed at run-time.

In these cases, it can be rather cumbersome to specify a --ignore parameter for each
file or directory to be ignored. This could be worked around by ensuring the existence
of ~/.stowrc containing multiple --ignore lines, or if a different set of files/directories
should be ignored depending on which stow package is involved, a .stowrc file for each stow
package, but this would require the user to ensure that they were in the correct directory
before invoking stow, which would be tedious and error-prone. Furthermore, since Stow
shifts parameters from .stowrc onto ARGV at run-time, it could clutter up the process
table with excessively long parameter lists, or even worse, exceed the operating system’s
limit for process arguments.

Therefore in addition to --ignore parameters, Stow provides a way to specify lists of
files and directories to ignore.

4.2 Types And Syntax Of Ignore Lists

If you put Perl regular expressions, one per line, in a .stow-local-ignore file within any
top level package directory, in which case any file or directory within that package matching
any of these regular expressions will be ignored. In the absence of this package-specific ignore
list, Stow will instead use the contents of ~/.stow-global-ignore, if it exists. If neither
the package-local or global ignore list exist, Stow will use its own built-in default ignore list,
which serves as a useful example of the format of these ignore list files:

Comments and blank lines are allowed.

RCS

.+,v

CVS

\.\#.+ # CVS conflict files / emacs lock files

\.cvsignore

\.svn

_darcs

\.hg

\.git

\.gitignore

\.gitmodules

Chapter 4: Ignore Lists 9

.+~ # emacs backup files

\#.*\# # emacs autosave files

^/README.*

^/LICENSE.*

^/COPYING

Stow first iterates through the chosen ignore list (built-in, global, or package-local) as
per above, stripping out comments (if you want to include the ‘#’ symbol in a regular
expression, escape it with a blackslash) and blank lines, placing each regular expressions
into one of two sets depending on whether it contains the ‘/’ forward slash symbol.

Then in order to determine whether a file or directory should be ignored:

1. Stow calculates its path relative to the top-level package directory, prefixing that with
‘/’. If any of the regular expressions containing a ‘/’ exactly1 match a subpath2 of this
relative path, then the file or directory will be ignored.

2. If none of the regular expressions containing a ‘/’ match in the manner described above,
Stow checks whether the basename3 of the file or directory matches exactly against the
remaining regular expressions which do not contain a ‘/’, and if so, ignores the file or
directory.

3. Otherwise, the file or directory is not ignored.

For example, if a file bazqux is in the foo/bar subdirectory of the package directory,
Stow would use ‘/foo/bar/bazqux’ as the text for matching against regular expressions
which contain ‘/’, and ‘bazqux’ as the text for matching against regular expressions which
don’t contain ‘/’. Then regular expressions ‘bazqux’, ‘baz.*’, ‘.*qux’, ‘bar/.*x’, and
‘^/foo/.*qux’ would all match (causing the file to be ignored), whereas ‘bar’, ‘baz’, ‘qux’,
and ‘o/bar/b’ would not (although ‘bar’ would cause its parent directory to be ignored and
prevent Stow from recursing into that anyway, in which case the file bazqux would not even
be considered for stowing).

As a special exception to the above algorithm, any .stow-local-ignore present in the
top-level package directory is always ignored, regardless of the contents of any ignore list,
because this file serves no purpose outside the stow directory.

4.3 Justification For Yet Another Set Of Ignore Files

The reader may note that this format is very similar to existing ignore list file formats,
such as those for cvs, git, rsync etc., and wonder if another set of ignore lists is justified.
However there are good reasons why Stow does not simply check for the presence of say,
.cvsignore, and use that if it exists. Firstly, there is no guarantee that a stow package
would contain any version control meta-data, or permit introducing this if it didn’t already
exist.

1 Exact matching means the regular expression is anchored at the beginning and end, in contrast to
unanchored regular expressions which will match a substring.

2 In this context, “subpath” means a contiguous subset of path segments; e.g for the relative path
one/two/three, there are six valid subpaths: one, two, three, one/two, two/three, one/two/three.

3 The “basename” is the name of the file or directory itself, excluding any directory path prefix - as
returned by the basename command.

Chapter 4: Ignore Lists 10

Secondly even if it did, version control system ignore lists generally reflect build-time
ignores rather than install-time, and there may be some intermediate or temporary files
on those ignore lists generated during development or at build-time which it would be
inappropriate to stow, even though many files generated at build-time (binaries, libraries,
documentation etc.) certainly do need to be stowed. Similarly, if a file is not in the version
control system’s ignore list, there is no way of knowing whether the file is intended for end
use, let alone whether the version control system is tracking it or not.

Therefore it seems clear that ignore lists provided by version control systems do not
provide sufficient information for Stow to determine which files and directories to stow, and
so it makes sense for Stow to support independent ignore lists.

11

5 Installing Packages

The default action of Stow is to install a package. This means creating symlinks in the
target tree that point into the package tree. Stow attempts to do this with as few symlinks
as possible; in other words, if Stow can create a single symlink that points to an entire
subtree within the package tree, it will choose to do that rather than create a directory in
the target tree and populate it with symlinks.

5.1 Tree folding

For example, suppose that no packages have yet been installed in /usr/local; it’s com-
pletely empty (except for the stow subdirectory, of course). Now suppose the Perl package
is installed. Recall that it includes the following directories in its installation image: bin;
info; lib/perl; man/man1. Rather than creating the directory /usr/local/bin and pop-
ulating it with symlinks to ../stow/perl/bin/perl and ../stow/perl/bin/a2p (and so
on), Stow will create a single symlink, /usr/local/bin, which points to stow/perl/bin.
In this way, it still works to refer to /usr/local/bin/perl and /usr/local/bin/a2p, and
fewer symlinks have been created. This is called tree folding, since an entire subtree is
“folded” into a single symlink.

To complete this example, Stow will also create the symlink /usr/local/info pointing
to stow/perl/info; the symlink /usr/local/lib pointing to stow/perl/lib; and the
symlink /usr/local/man pointing to stow/perl/man.

Now suppose that instead of installing the Perl package into an empty target tree, the tar-
get tree is not empty to begin with. Instead, it contains several files and directories installed
under a different system-administration philosophy. In particular, /usr/local/bin already
exists and is a directory, as are /usr/local/lib and /usr/local/man/man1. In this case,
Stow will descend into /usr/local/bin and create symlinks to ../stow/perl/bin/perl

and ../stow/perl/bin/a2p (etc.), and it will descend into /usr/local/lib and create the
tree-folding symlink perl pointing to ../stow/perl/lib/perl, and so on. As a rule, Stow
only descends as far as necessary into the target tree when it can create a tree-folding sym-
link. However, this behaviour can be changed via the --no-folding option; see Chapter 3
[Invoking Stow], page 5.

5.2 Tree unfolding

The time often comes when a tree-folding symlink has to be undone because another pack-
age uses one or more of the folded subdirectories in its installation image. This opera-
tion is called splitting open or unfolding a folded tree. It involves removing the original
symlink from the target tree, creating a true directory in its place, and then populating
the new directory with symlinks to the newly-installed package and to the old package
that used the old symlink. For example, suppose that after installing Perl into an empty
/usr/local, we wish to install Emacs. Emacs’s installation image includes a bin directory
containing the emacs and etags executables, among others. Stow must make these files
appear to be installed in /usr/local/bin, but presently /usr/local/bin is a symlink to
stow/perl/bin. Stow therefore takes the following steps: the symlink /usr/local/bin is
deleted; the directory /usr/local/bin is created; links are made from /usr/local/bin

Chapter 5: Installing Packages 12

to ../stow/emacs/bin/emacs and ../stow/emacs/bin/etags; and links are made from
/usr/local/bin to ../stow/perl/bin/perl and ../stow/perl/bin/a2p.

5.3 Ownership

When splitting open a folded tree, Stow makes sure that the symlink it is about to remove
points inside a valid package in the current stow directory. Stow will never delete anything
that it doesn’t own. Stow “owns” everything living in the target tree that points into a
package in the stow directory. Anything Stow owns, it can recompute if lost: symlinks
that point into a package in the stow directory, or directories that only contain symlinks
that stow “owns”. Note that by this definition, Stow doesn’t “own” anything in the stow
directory or in any of the packages.

5.4 Conflicts during installation

If Stow needs to create a directory or a symlink in the target tree and it cannot because that
name is already in use and is not owned by Stow, then a conflict has arisen. See Chapter 7
[Conflicts], page 14.

13

6 Deleting Packages

When the -D option is given, the action of Stow is to delete a package from the target tree.
Note that Stow will not delete anything it doesn’t “own”. Deleting a package does not
mean removing it from the stow directory or discarding the package tree.

To delete a package, Stow recursively scans the target tree, skipping over any direc-
tory that is not included in the installation image.1 For example, if the target direc-
tory is /usr/local and the installation image for the package being deleted has only a
bin directory and a man directory at the top level, then we only scan /usr/local/bin

and /usr/local/man, and not /usr/local/lib or /usr/local/share, or for that mat-
ter /usr/local/stow. Any symlink it finds that points into the package being deleted
is removed. Any directory that contained only symlinks to the package being deleted is
removed.

6.1 Refolding “foldable” trees.

After removing symlinks and empty subdirectories, any directory that contains only sym-
links to a single other package is considered to be a previously “folded” tree that was “split
open.” Stow will refold the tree by removing the symlinks to the surviving package, remov-
ing the directory, then linking the directory back to the surviving package. However, this
behaviour can be prevented via the --no-folding option; see Chapter 3 [Invoking Stow],
page 5.

1 This approach was introduced in version 2 of GNU Stow. Previously, the whole target tree was scanned
and stow directories were explicitly omitted. This became problematic when dealing with very large
installations. The only situation where this is useful is if you accidentally delete a directory in the
package tree, leaving you with a whole bunch of dangling links. Note that you can enable the old
approach with the -p option. Alternatively, you can use the --badlinks option get stow to search for
dangling links in your target tree and remove the offenders manually.

14

7 Conflicts

If, during installation, a file or symlink exists in the target tree and has the same name as
something Stow needs to create, and if the existing name is not a folded tree that can be
split open, then a conflict has arisen. A conflict also occurs if a directory exists where Stow
needs to place a symlink to a non-directory. On the other hand, if the existing name is
merely a symlink that already points where Stow needs it to, then no conflict has occurred.
(Thus it is harmless to install a package that has already been installed.)

For complex packages, scanning the stow and target trees in tandem, and deciding
whether to make directories or links, split-open or fold directories, can actually take a long
time (a number of seconds). Moreover, an accurate analysis of potential conflicts requires
us to take into account all of these operations.

7.1 Deferred Operation

Since version 2.0, Stow now adopts a two-phase algorithm, first scanning for any potential
conflicts before any stowing or unstowing operations are performed. If any conflicts are
found, they are displayed and then Stow terminates without making any modifications to
the filesystem. This means that there is much less risk of a package being partially stowed
or unstowed due to conflicts.

Prior to version 2.0, if a conflict was discovered, the stow or unstow operation could be
aborted mid-flow, leaving the target tree in an inconsistent state.

15

8 Mixing Operations

Since version 2.0, multiple distinct actions can be specified in a single invocation of GNU
Stow. For example, to update an installation of Emacs from version 21.3 to 21.4a you can
now do the following:

stow -D emacs-21.3 -S emacs-21.4a

which will replace emacs-21.3 with emacs-21.4a using a single invocation.

This is much faster and cleaner than performing two separate invocations of stow, be-
cause redundant folding/unfolding operations can be factored out. In addition, all the oper-
ations are calculated and merged before being executed (see [Deferred Operation], page 14),
so the amount of time in which GNU Emacs is unavailable is minimised.

You can mix and match any number of actions, for example,

stow -S pkg1 pkg2 -D pkg3 pkg4 -S pkg5 -R pkg6

will unstow pkg3, pkg4 and pkg6, then stow pkg1, pkg2, pkg5 and pkg6.

16

9 Multiple Stow Directories

If there are two or more system administrators who wish to maintain software separately, or
if there is any other reason to want two or more stow directories, it can be done by creating
a file named .stow in each stow directory. The presence of /usr/local/foo/.stow informs
Stow that, though foo is not the current stow directory, even if it is a subdirectory of the
target directory, nevertheless it is a stow directory and as such Stow doesn’t “own” anything
in it (see Chapter 5 [Installing Packages], page 11). This will protect the contents of foo
from a ‘stow -D’, for instance.

When multiple stow directories share a target tree, if a tree-folding symlink is encoun-
tered and needs to be split open during an installation, as long as the top-level stow directory
into which the existing symlink points contains .stow, Stow knows how to split open the
tree in the correct manner.

17

10 Target Maintenance

From time to time you will need to clean up your target tree. Since version 2, Stow provides
a new utility chkstow to help with this. It includes three operational modes which performs
checks that would generally be too expensive to be performed during normal stow execution.

The syntax of the chkstow command is:

chkstow [options]

The following options are supported:

‘-t dir’
‘--target=dir’

Set the target directory to dir instead of the parent of the stow directory.
Defaults to the parent of the stow directory, so it is typical to execute stow

from the directory /usr/local/stow.

‘-b’
‘--badlinks’

Checks target directory for bogus symbolic links. That is, links that point to
non-existent files.

‘-a’
‘--aliens’

Checks for files in the target directory that are not symbolic links. The target
directory should be managed by stow alone, except for directories that contain
a .stow file.

‘-l’
‘--list’ Will display the target package for every symbolic link in the stow target di-

rectory.

18

11 Resource Files

Default command line options may be set in .stowrc (current directory) or ~/.stowrc

(home directory). These are parsed in that order, and are appended together if they both
exist. The effect of the options in the resource file is similar to simply prepending the
options to the command line. This feature can be used for some interesting effects.

For example, suppose your site uses more than one stow directory, perhaps in order
to share around responsibilities with a number of systems administrators. One of the
administrators might have the following in their ~/.stowrc file:

--dir=/usr/local/stow2

--target=/usr/local

--ignore='~'

--ignore='^CVS'

so that the stow command will default to operating on the /usr/local/stow2 directory,
with /usr/local as the target, and ignoring vi backup files and CVS directories.

If you had a stow directory /usr/local/stow/perl-extras that was only used for Perl
modules, then you might place the following in /usr/local/stow/perl-extras/.stowrc:

--dir=/usr/local/stow/perl-extras

--target=/usr/local

--override=bin

--override=man

--ignore='perllocal\.pod'

--ignore='\.packlist'

--ignore='\.bs'

so that when you are in the /usr/local/stow/perl-extras directory, stow will regard
any subdirectories as stow packages, with /usr/local as the target (rather than the im-
mediate parent directory /usr/local/stow), overriding any pre-existing links to bin files
or man pages, and ignoring some cruft that gets installed by default.

If an option is provided both on the command line and in a resource file, the command
line option takes precedence. For options that provide a single value, such as --target

or --dir, the command line option will overwrite any options in the resource file. For
options that can be given more than once, --ignore for example, command line options
and resource options are appended together.

For options that take a file path, environment variables and the tilde character (~) are
expanded. An environment variable can be given in either the $VAR or ${VAR} form. To
prevent expansion, escape the $ or ~ with a backslash.

The options -D, -S, and -R are ignored in resource files. This is also true of any package
names given in the resource file.

19

12 Compile-time vs. Install-time

Software whose installation is managed with Stow needs to be installed in one place (the
package directory, e.g. /usr/local/stow/perl) but needs to appear to run in another
place (the target tree, e.g., /usr/local). Why is this important? What’s wrong with Perl,
for instance, looking for its files in /usr/local/stow/perl instead of in /usr/local?

The answer is that there may be another package, e.g., /usr/local/stow/perl-extras,
stowed under /usr/local. If Perl is configured to find its files in /usr/local/stow/perl,
it will never find the extra files in the ‘perl-extras’ package, even though they’re intended
to be found by Perl. On the other hand, if Perl looks for its files in /usr/local, then it
will find the intermingled Perl and ‘perl-extras’ files.

This means that when you compile a package, you must tell it the location of the run-
time, or target tree; but when you install it, you must place it in the stow tree.

12.1 Advice on changing compilation and installation
parameters

Some software packages allow you to specify, at compile-time, separate locations for instal-
lation and for run-time. Perl is one such package; see Section 12.5 [Perl and Perl 5 Modules],
page 21. Others allow you to compile the package, then give a different destination in the
‘make install’ step without causing the binaries or other files to get rebuilt. Most GNU
software falls into this category; Emacs is a notable exception. See Section 12.2 [GNU
Emacs], page 20, and Section 12.3 [Other FSF Software], page 20.

Still other software packages cannot abide the idea of separate installation and run-time
locations at all. If you try to ‘make install prefix=/usr/local/stow/foo’, then first
the whole package will be recompiled to hardwire the /usr/local/stow/foo path. With
these packages, it is best to compile normally, then run ‘make -n install’, which should
report all the steps needed to install the just-built software. Place this output into a file,
edit the commands in the file to remove recompilation steps and to reflect the Stow-based
installation location, and execute the edited file as a shell script in place of ‘make install’.
Be sure to execute the script using the same shell that ‘make install’ would have used.

(If you use GNU Make and a shell [such as GNU bash] that understands pushd and
popd, you can do the following:

1. Replace all lines matching ‘make[n]: Entering directory dir’ with ‘pushd dir’.

2. Replace all lines matching ‘make[n]: Leaving directory dir’ with ‘popd’.

3. Delete all lines matching ‘make[n]: Nothing to be done for rule’.

Then find other lines in the output containing cd or make commands and rewrite or
delete them. In particular, you should be able to delete sections of the script that resemble
this:

for i in dir_1 dir_2 . . .; do \

(cd $i; make args . . .) \

done

Note, that’s “should be able to,” not “can.” Be sure to modulate these guidelines with
plenty of your own intelligence.

The details of stowing some specific packages are described in the following sections.

Chapter 12: Compile-time vs. Install-time 20

12.2 GNU Emacs

Although the Free Software Foundation has many enlightened practices regarding Makefiles
and software installation (see see Section 12.3 [Other FSF Software], page 20), Emacs, its
flagship program, doesn’t quite follow the rules. In particular, most GNU software allows
you to write:

make

make install prefix=/usr/local/stow/package

If you try this with Emacs, then the new value for prefix in the ‘make install’ step will
cause some files to get recompiled with the new value of prefix wired into them. In Emacs
19.23 and later,1 the way to work around this problem is:

make

make install-arch-dep install-arch-indep prefix=/usr/local/stow/emacs

In 19.22 and some prior versions of Emacs, the workaround was:

make

make do-install prefix=/usr/local/stow/emacs

12.3 Other FSF Software

The Free Software Foundation, the organization behind the GNU project, has been uni-
fying the build procedure for its tools for some time. Thanks to its tools ‘autoconf’ and
‘automake’, most packages now respond well to these simple steps, with no other interven-
tion necessary:

./configure options

make

make install prefix=/usr/local/stow/package

Hopefully, these tools can evolve to be aware of Stow-managed packages, such that
providing an option to ‘configure’ can allow ‘make’ and ‘make install’ steps to work
correctly without needing to “fool” the build process.

12.4 Cygnus Software

Cygnus is a commercial supplier and supporter of GNU software. It has also written several
of its own packages, released under the terms of the GNU General Public License; and it
has taken over the maintenance of other packages. Among the packages released by Cygnus
are ‘gdb’, ‘gnats’, and ‘dejagnu’.

Cygnus packages have the peculiarity that each one unpacks into a directory tree with a
generic top-level Makefile, which is set up to compile all of Cygnus’ packages, any number
of which may reside under the top-level directory. In other words, even if you’re only
building ‘gnats’, the top-level Makefile will look for, and try to build, gdb and dejagnu

subdirectories, among many others.

The result is that if you try ‘make -n install prefix=/usr/local/stow/package’ at
the top level of a Cygnus package, you’ll get a bewildering amount of output. It will then
be very difficult to visually scan the output to see whether the install will proceed correctly.
Unfortunately, it’s not always clear how to invoke an install from the subdirectory of interest.

1 As I write this, the current version of Emacs is 19.31.

Chapter 12: Compile-time vs. Install-time 21

In cases like this, the best approach is to run your ‘make install prefix=. . . ’, but be
ready to interrupt it if you detect that it is recompiling files. Usually it will work just fine;
otherwise, install manually.

12.5 Perl and Perl 5 Modules

Perl 4.036 allows you to specify different locations for installation and for run-time. It is
the only widely-used package in this author’s experience that allows this, though hopefully
more packages will adopt this model.

Unfortunately, the authors of Perl believed that only AFS sites need this ability. The
configuration instructions for Perl 4 misleadingly state that some occult means are used
under AFS to transport files from their installation tree to their run-time tree. In fact, that
confusion arises from the fact that Depot, Stow’s predecessor, originated at Carnegie Mellon
University, which was also the birthplace of AFS. CMU’s need to separate install-time and
run-time trees stemmed from its use of Depot, not from AFS.

The result of this confusion is that Perl 5’s configuration script doesn’t even offer the
option of separating install-time and run-time trees unless you’re running AFS. Fortunately,
after you’ve entered all the configuration settings, Perl’s setup script gives you the oppor-
tunity to edit those settings in a file called config.sh. When prompted, you should edit
this file and replace occurrences of

inst. . ./usr/local. . .

with

inst. . ./usr/local/stow/perl. . .

You can do this with the following Unix command:

sed 's,^\(inst.*/usr/local\),\1/stow/perl,' config.sh > config.sh.new

mv config.sh.new config.sh

Hopefully, the Perl authors will correct this deficiency in Perl 5’s configuration mecha-
nism.

Perl 5 modules—i.e., extensions to Perl 5—generally conform to a set of standards for
building and installing them. The standard says that the package comes with a top-level
Makefile.PL, which is a Perl script. When it runs, it generates a Makefile.

If you followed the instructions above for editing config.sh when Perl was built, then
when you create a Makefile from a Makefile.PL, it will contain separate locations for
run-time (/usr/local) and install-time (/usr/local/stow/perl). Thus you can do

perl Makefile.PL

make

make install

and the files will be installed into /usr/local/stow/perl. However, you might prefer each
Perl module to be stowed separately. In that case, you must edit the resulting Makefile,
replacing /usr/local/stow/perl with /usr/local/stow/module. The best way to do this
is:

perl Makefile.PL

find . -name Makefile -print | \

xargs perl -pi~ -e 's,^(INST.*/stow)/perl,$1/module,;'

Chapter 12: Compile-time vs. Install-time 22

make

make install

(The use of ‘find’ and ‘xargs’ ensures that all Makefiles in the module’s source tree, even
those in subdirectories, get edited.) A good convention to follow is to name the stow
directory for a Perl module cpan.module, where ‘cpan’ stands for Comprehensive Perl
Archive Network, a collection of FTP sites that is the source of most Perl 5 extensions.
This way, it’s easy to tell at a glance which of the subdirectories of /usr/local/stow are
Perl 5 extensions.

When you stow separate Perl 5 modules separately, you are likely to encounter conflicts
(see Chapter 7 [Conflicts], page 14) with files named .exists and perllocal.pod. One
way to work around this is to remove those files before stowing the module. If you use the
cpan.module naming convention, you can simply do this:

cd /usr/local/stow

find cpan.* \(-name .exists -o -name perllocal.pod \) -print | \

xargs rm

23

13 Bootstrapping

Suppose you have a stow directory all set up and ready to go: /usr/local/stow/perl

contains the Perl installation, /usr/local/stow/stow contains Stow itself, and perhaps
you have other packages waiting to be stowed. You’d like to be able to do this:

cd /usr/local/stow

stow -vv *

but stow is not yet in your PATH. Nor can you do this:

cd /usr/local/stow

stow/bin/stow -vv *

because the ‘#!’ line at the beginning of stow tries to locate Perl (usually in
/usr/local/bin/perl), and that won’t be found. The solution you must use is:

cd /usr/local/stow

perl/bin/perl stow/bin/stow -vv *

24

14 Reporting Bugs

You can report bugs to the current maintainers in one of three ways:

1. Send e-mail to bug-stow@gnu.org.

2. File an issue in the Savannah bug tracker (https://savannah.gnu.org/bugs/?
group=stow).

3. File an issue in the GitHub project (https://github.com/aspiers/stow/issues/).

While GitHub is arguably the most convenient of these three options, it is not the
most ethical or freedom-preserving way to host software projects (https://www.gnu.org/
software/repo-criteria-evaluation.html#GitHub). Therefore the GitHub project may
be moved to a more ethical hosting service (https://github.com/aspiers/stow/issues/
43) in the future.

Before reporting a bug, it is recommended to check whether it is already known, so
please first see Chapter 15 [Known Bugs], page 25.

When reporting a new bug, please include:

• the version number of Stow (‘stow --version’);

• the version number of Perl (‘perl -v’);

• the system information, which can often be obtained with ‘uname -a’;

• a description of the bug;

• the precise command you gave;

• the output from the command (preferably verbose output, obtained by adding
‘--verbose=5’ to the Stow command line).

If you are really keen, consider developing a minimal test case and creating a new test.
See the t/ directory in the source for lots of examples, and the CONTRIBUTING.md file for a
guide on how to contribute.

Before reporting a bug, please read the manual carefully, especially Chapter 15 [Known
Bugs], page 25, to see whether you’re encountering something that doesn’t need reporting.
(see Chapter 7 [Conflicts], page 14).

mailto:bug-stow@gnu.org
https://savannah.gnu.org/bugs/?group=stow
https://savannah.gnu.org/bugs/?group=stow
https://github.com/aspiers/stow/issues/
https://www.gnu.org/software/repo-criteria-evaluation.html#GitHub
https://www.gnu.org/software/repo-criteria-evaluation.html#GitHub
https://www.gnu.org/software/repo-criteria-evaluation.html#GitHub
https://github.com/aspiers/stow/issues/43
https://github.com/aspiers/stow/issues/43

25

15 Known Bugs

Known bugs can be found in the following locations:

• the GitHub issue tracker (https://github.com/aspiers/stow/issues/)

• the Savannah bug tracker (https://savannah.gnu.org/bugs/?group=stow)

• the bug-stow list archives (https://lists.gnu.org/archive/html/bug-stow/)

If you think you have found a new bug, please see Chapter 14 [Reporting Bugs], page 24.

https://github.com/aspiers/stow/issues/
https://savannah.gnu.org/bugs/?group=stow
https://lists.gnu.org/archive/html/bug-stow/

26

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

GNU General Public License 27

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 28

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU General Public License 29

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 30

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU General Public License 31

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 32

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU General Public License 33

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 34

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

GNU General Public License 35

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 36

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

37

Index

A
absolute symlink . 3
adopting existing files . 6

C
configuration files . 18
conflicts . 12, 14

D
deferred operation . 14, 15
deletion . 13
directory folding . 11
dotfiles . 6
dry run . 7

F
folding trees . 11

I
ignore lists . 8
ignoring files and directories . 8
installation . 11
installation conflicts . 12
installation image . 3

M
maintenance . 17
mixing operations . 15

O
ownership . 12

P
package . 3
package directory . 3
package name . 3

R
refolding trees . 13
relative symlink . 3
resource files . 18

S
simulated run . 7
splitting open folded trees . 11
stow directory . 3
symlink . 3
symlink destination . 3
symlink source . 3

T
target directory . 3
tree folding . 11
tree refolding . 13
tree unfolding . 11
tree unsplitting . 11

U
unfolding trees . 11

V
verbosity levels . 7

	1 Introduction
	2 Terminology
	3 Invoking Stow
	4 Ignore Lists
	Motivation For Ignore Lists
	Types And Syntax Of Ignore Lists
	Justification For Yet Another Set Of Ignore Files

	5 Installing Packages
	Tree folding
	Tree unfolding
	Ownership
	Conflicts during installation

	6 Deleting Packages
	Refolding ``foldable'' trees.

	7 Conflicts
	Deferred Operation

	8 Mixing Operations
	9 Multiple Stow Directories
	10 Target Maintenance
	11 Resource Files
	12 Compile-time vs. Install-time
	Advice on changing compilation and installation parameters
	GNU Emacs
	Other FSF Software
	Cygnus Software
	Perl and Perl 5 Modules

	13 Bootstrapping
	14 Reporting Bugs
	15 Known Bugs
	GNU General Public License
	Index

